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PLAN OF THE TALK

e Rotation number and rotation sets
e Statement of the main results

e Ideas in the proof(s)



ROTATION THEORY
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St = R/Z circle m:R — S! natural projection

Given f € Homeo, (S'), a lift is a (continuous) map F: R — R
such that mo F = fom: thus F(x +1) = F(x) + 1 for all x € R

Poincaré introduced the translation number
Fr(X) — x

p(F) = lim (independs of X € R)

and the rotation number

p(f) = p(F)(mod1) (independs of F)



S' =R/Z circle 7 :R — S! natural projection

Given f € Homeo, (S'), a lift is a (continuous) map F : R — R
such that mo F = fom: thus F(x +1) = F(x) + 1 for all x € R

Poincaré introduced the translation number
F(X) — X
p(F) = lim # (independs of X € R)

n—oo

and the rotation number

p(f) = p(F)(modl) (independs of F)

Rmk: The rotation number is effective:

. p(f) is a topological invariant

p(f) € Qif and only if Per(f) # 0 (and all have same period)
if p(f) ¢ Q then w(x) C S* is minimal, for all x

(Poincaré) if « = p(f) ¢ Q and f is transitive then f is
topologically conjugated to R,

. Rational rotation vector holds open & densely4n Homeo..(SY)

R

(6]



TY = R9/79 d-torus, d >2 7 :RY — T natural projection

Given f € Homeog(T?) isotopic to identity, a lift is a (continuous)
map F: RY — R such that ro F = fom: F(x+u)= F(x)+u
for all x € R? and all u € Z¢
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TY =R9Y/Z9 d-torus, d >2 7 :R? — T natural projection

Given f € Homeog(T9) isotopic to identity, a lift is a (continuous)
map F: RY — R such that ro F = fom: F(x+u)= F(x)+u
for all x € RY and all v € Z9

Misiurewicz and Ziemian (JLMS 1991) introduced several
rotation sets to measure " global” displacement of points in T¢

1. Pointwise rotation set Given x € T set

p(F, x) := accumulation vectors of (

(independs of X € 7 1(x) )

oo(F) = | o(F,x)
xeTd
Rmk:
1. pp(F,x) C RY is compact and connected (Llibre-Mackay)

2. Hard to work: p,(F) need not be connected (MZ)
3. {[ ()F d/l Y < ./\/lerg(Td)} C [)p(F) (¢f = F —_id displacement_function)
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TY = R9/Z9 d-torus, d > 2
Misiurewicz and Ziemian (JLMS 1991) introduced several
rotation sets to measure " global” displacement of points in T¢
1. Pointwise rotation set
pp(F) = |J n(F.x)
x€Td

2. (Ergodic) measure rotation set

Perg(F) /¢F dp:pp € Merg(T )}

3. Rotation set

p(F) := accumulation vectors of (

Rmk:
1. perg(F) C pp(F) C p(F)

2. Good news: p(F) always connected
co

3. pinv(F) = perg(F)" = pp(F)™ = p(F)™ convex sets




SOME QUESTIONS

What is the , persistence, and what does
it say about the dynamics?

Can one characterize the subsets of R? that can be realizable
as rotation sets of homeomorphisms?

How to characterize the complexity of the set of points with a
certain rotation vector (i.e. level sets)?

What about the set of
(largest non-trivial pointwise rotation set)?



SOME RESULTS ON REALIZATION
DIMENSION d = 2 (Franks 88’, 89', Llibre-Mackay 91', Misiurewicz-Ziemian 91', Kwapisz 92')

e p(F) is convex

e VK C R? convex there is f € Homeog(T?) s.t. p(F) = K

Homeog(T?) 3 f + p(F) is upper semicontinuous (Hausdorf metric)
if f € Homeop(T?) then

a. (0,0) € perg(F) = Fix(F) # 0

b. v € interior(p(F)) N Q? = exists p € Per(f) s.t. p(F,p) = v

c. v € extremal(p(F)) N Q? = exists p € Per(f) s.t. p(F,p) =v
if int(p(F)) # 0, then hyop(f) >0

e for any connected C C p(F) there is x € T? s.t. p(F,x) = C
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e p(F) is convex

VK C R? convex there is f € Homeog(T?) s.t. p(F) = K
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o there exists f € Homeog(T?3) so that p(F) is not convex



SOME RESULTS ON REALIZATION
DIMENSION d = 2 (Franks 88, 89’, Llibre-Mackay 91', Misiurewicz-Ziemian 91', Kwapisz 92’)
e p(F) is convex
e VK C R? convex polygon 3f € Homeog(T?) s.t. p(F) = K

Homeog(T?) > f + p(F) is upper semicontinuous (Hausdorft metric)
if f € Homeog(T?) then

a. (0,0) € perg(F) = Fix(F) # 0

b. v € interior(p(F)) N Q? = exists p € Per(f) s.t. p(F,p) =v

c. v € extremal(p(F)) N Q? = exists p € Per(f) s.t. p(F,p) =v
if int(p(F)) # 0, then heop(f) >0

o for any connected C C p(F) there is x € T? s.t. p(F,x) = C

DIMENSION d > 3
o there exists f € Homeog(T?) so that p(F) is not convex

Rmk: No characterization of the "size" of points with historic
behavior



MAIN RESULTS

0. SOME DEFINITIONS

I. STRUCTURE OF POINTS WITH HISTORIC
BEHAVIOR

II. SHAPE & STABILITY IN HIGHER DIMENSION

III. EXTREMAL VECTORS AND MAXIMIZING
MEASURES



0. SOME DEFINITIONS
(X, d) compact metric space, f: X — X continuous

Topological entropy

where s(n, €) is maximal cardinality of a (n,¢)-separated subset.



0. SOME DEFINITIONS
(X, d) compact metric space, f: X — X continuous

Topological entropy

where s(n, €) is maximal cardinality of a (n,¢)-separated subset.
If Z C X is f-invariant, define by a Carathéodory structure

hz(f, ) = !irpo hz(f,¢)
where
hz(f,e) =inf{s € R: m(Z,s,e) =0}
and

— —sn(B)
M(Z,s,e,N) |r|1f{Ze },

Bel
where the infimum is taken over all countable collections I by
dynamical balls B of radius € and length n(B) > N,



0. SOME DEFINITIONS

Rmk: C%-generic homeomorphisms have infinite topological
entropy (Yano 80')

Metric mean dimension (Lindenstrauss and Weiss)

l 1
mdimy (F) = lim inf I TSUPn2oc 5 198 5(m,€)

mir “loge € [0, dimg(X, d)]

which is non-zero only if f has infinite topological entropy.



0. SOME DEFINITIONS

Given f € Homeoo(Td), a lift F and x € T, the pointwise rotation
set p(F,x) is non-trivial if p(F,x) # {v} for some v € RY



0. SOME DEFINITIONS

Given f € Homeoo('ﬂ‘d), a lift F and x € T, the pointwise rotation
set p(F,x) is non-trivial if p(F,x) # {v} for some v € RY

We say the pointwise rotation set p(F, x) is wild if

p(F,x) = pp(F)

Rmk:
1. p(F,x) C pp(F) for all x € T

2. it is necessary that p,(F) is connected in order to exist points
with wild rotation sets



I. STRUCTURE OF POINTS WITH HISTORIC BEHAVIOR

THEOREM A
e Volume preserving: there exists Baire residual so
that for every f € Ry (and lift F)

(i) pp(F) is connected;

(i) {x € T?: p(F,x) = pp(F) is non-trivial} is Baire residual, has full
topological pressure and full metric mean dimension.



I. STRUCTURE OF POINTS WITH HISTORIC BEHAVIOR

THEOREM A
e Volume preserving: there exists Baire residual so
that for every f € Ry (and lift F)

(i) pp(F) is connected;
(i) {x € T?: p(F,x) = pp(F) is non-trivial} is Baire residual, has full

topological pressure and full metric mean dimension.

o Non-volume preserving: there exists a Baire residual subset
Ro C {f e Homeoy(T?) s int(p(F)) # 0} so that if f € Ry, there exists
a positive entropy chain recurrent class I' C Q(f) so that

{x € T: p(F,x) is non-trivial }

is a Baire residual, full topological pressure and full metric mean
dimension subset of T'.



II. SHAPE & STABILITY IN HIGHER DIMENSION

THEOREM B For any d > 2 there exists a C°-open and dense
subset of Homeog(T9) (and Homeoy »(T?)) formed by
homeomorphisms whose rotation sets are stable, convex polyhedra
with rational vertices. Moreover, in the volume preserving case the
polyhedra have non-empty interior.

Rmk: Homeomorphisms with exceptional rotation sets do exist
(Misiurewicz-Ziemian 1991")




III. ERGODIC OPTIMIZATION

THEOREM C Let d > 2 there exists a C%-open and dense
subset of homeomorphisms in Homeoo(T9) (and Homeog »(T))
so that every extremal vector v € p(F) is only realizable by
periodic points. In particular

H, = {x cT: ve p(F,x)}

has zero topological entropy.



IDEAS IN THE PROOF(S)



IDEAS IN THE PROOF(S)

THEOREM B (VOLUME PRESERVING) For any d > 2 there
exists a C%-open and dense subset of Homeog »(T?) formed by
homeomorphisms whose rotation sets are stable, convex polyhedra
with rational vertices and non-empty interior.



Step 1: Convexity of rotation sets is C%-generic
Ta ke d Z 2 arbitrary (the theorem is known when d = 2)

Proposition 1: There exists a Baire residual R3 C Homeog (T?)
so that every f € R3 has convex rotation sets.
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(Guilheneuf-Lefeuvre)
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e The set of all periodic measures is dense in M(T?) in the
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Proposition 1: There exists a Baire residual R3 C Homeog (T?)
so that every f € R3 has convex rotation sets.
Proof.
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Step 1: Convexity of rotation sets is C%-generic
Take d Z 2 arbitrary (the theorem is known when d = 2)

Proposition 1: There exists a Baire residual R3 C Homeog (T?)
so that every f € R3 has convex rotation sets.
Proof.

e CO-generic homeomorphisms satisfy the specification property
(Guilheneuf-Lefeuvre)

e The set of all periodic measures is dense in M(T?) in the
weak™ topology (Sigmund)

e Since pjn,(F) = perg(F)Co = /)(F)CO we conclude that

pinv(F) - Perg(F) = /)(F) - [)(F) (the rotation set is compact)

e Convexity follows



Step 2: Stability and realization of extremal rational

vectors is C°-generic
(after Franks 88', Addas-Zanata 04')

Proposition 2: There exists a residual subset R4 C Homeog (T9)
such that if f € R every extremal vector v € p(F) is rational and
realizable (only) by periodic points.

Proof.

e CO%generic homeomorphisms satisfy the shadowing property
(Késcielniak-Mazur-Oprocha-Pilarczyk)
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Step 2: Stability and realization of extremal rational

vectors is C°-generic
(after Franks 88', Addas-Zanata 04')

Proposition 2: There exists a residual subset R4 C Homeog (T9)
such that if f € R every extremal vector v € p(F) is rational and
realizable (only) by periodic points.

Proof.

e CO%generic homeomorphisms satisfy the shadowing property
(Késcielniak-Mazur-Oprocha-Pilarczyk)

e f satisfies the shadowing property = the rotation sets are
upper-stable: there exists § > 0 such that if dco(F, G) < ¢
then p(G) C p(F)

e Key Lemma: if p(F) is d-upper stable then all extremal
vectors are rational and for every v € p(F) extremal there are

no non-atomic probabilities 1 so that p(F, 11) = v (uses Ackinson's

lemma & Hahn-Banach geometric theorem)



Step 3: From CP%generic to C%open and dense
(after Guilheneuf-Koropecki 17")

Proof of Theorem B (volume preserving).

e It is enough to prove C°-denseness of
Oy = {f € Homeog \(T?): f has rotation sets which are stable,

convex polyhedra with non-empty interior}
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e It is enough to prove C°-denseness of
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e Given f € Homeoo,,\(Td) and € > 0 take g € R3 N Ry that is

e-C%close to f, p(G) is 6-upper-stable for some § > 0 and

every extremal vector v € p(F) is realizable by periodic points




Step 3: From CP%generic to C%open and dense
(after Guilheneuf-Koropecki 17")

Proof of Theorem B (volume preserving).
e It is enough to prove C°-denseness of

Oy = {f € Homeog \(T?): f has rotation sets which are stable,

convex polyhedra with non-empty interior}

e Given f € Homeoo,,\(Td) and € > 0 take g € R3 N Ry that is
e-C%close to f, p(G) is 6-upper-stable for some § > 0 and
every extremal vector v € p(F) is realizable by periodic points

e Extremal vectors are finite (hence p(G) is rational
polyhedron) (Guilheneuf-Koropecki 17")
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Step 3: From CP%generic to C%open and dense
(after Guilheneuf-Koropecki 17")

Proof of Theorem B (volume preserving).

e It is enough to prove C°-denseness of
Oy = {f € Homeog \(T?): f has rotation sets which are stable,

convex polyhedra with non-empty interior}

e Given f € Homeoo,,\(Td) and € > 0 take g € R3 N Ry that is
e-C%close to f, p(G) is 6-upper-stable for some § > 0 and
every extremal vector v € p(F) is realizable by periodic points

e Extremal vectors are finite (hence p(G) is rational
polyhedron) (Guilheneuf-Koropecki 17")

e Take e-C%small perturbation H of G such that

"boundary"” periodic points are preserved and become stable
[m] = = =

it
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Step 3: From CP%generic to C%open and dense

Proof of Theorem B (volume preserving).

e It is enough to prove C°-denseness of

Oy = {f € Homeog \(T?): f has rotation sets which are stable,

convex polyhedra with non-empty interior}

e p(G) has non-empty interior: otherwise, take a suitable
perturbation T, o G of G in such a way that

p(TvoG,A)=v+p(G,A) & p(G)
(contradition with stability)

O



HAPPY BIRTHDAY MICHAL

“Mathematics is the most beautiful and most powerful
creation of the human spirit- Stephan Banach



