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Plan of the talk

• Rotation number and rotation sets

• Statement of the main results

• Ideas in the proof(s)



Rotation Theory



S1 = R/Z circle π : R→ S1 natural projection

Given f ∈ Homeo+(S1), a lift is a (continuous) map F : R→ R
such that π ◦ F = f ◦ π: thus F (x + 1) = F (x) + 1 for all x ∈ R

Poincaré introduced the translation number

ρ(F ) = lim
n→∞

F n(x̃)− x̃

n
(independs of x̃ ∈ R)

and the rotation number

ρ(f ) = ρ(F )(mod1) (independs of F )

Rmk: The rotation number is effective:

1. ρ(f ) is a topological invariant

2. ρ(f ) ∈ Q if and only if Per(f ) 6= ∅ (and all have same period)

3. if ρ(f ) /∈ Q then ω(x) ⊂ S1 is minimal, for all x

4. (Poincaré) if α = ρ(f ) /∈ Q and f is transitive then f is
topologically conjugated to Rα

5. Rational rotation vector holds open & densely in Homeo+(S1)
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Td = Rd/Zd d-torus, d ≥ 2 π : Rd → Td natural projection

Given f ∈ Homeo0(Td) isotopic to identity, a lift is a (continuous)
map F : Rd → Rd such that π ◦ F = f ◦ π: F (x + u) = F (x) + u
for all x ∈ Rd and all u ∈ Zd

Misiurewicz and Ziemian (JLMS 1991) introduced several
rotation sets to measure ”global”displacement of points in Td

1. Pointwise rotation set Given x ∈ Td set

ρ(F , x) := accumulation vectors of
(F n(x̃)− x̃

n

)
n≥1

(independs of x̃ ∈ π−1(x) )

ρp(F ) :=
⋃
x∈Td

ρ(F , x)

Rmk:

1. ρp(F , x) ⊂ Rd is compact and connected (Llibre-Mackay)

2. Hard to work: ρp(F ) need not be connected (MZ)
3. {

∫
φF dµ : µ ∈Merg (Td)} ⊂ ρp(F ) (φF = F − id displacement function)
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Td = Rd/Zd d-torus, d ≥ 2

Misiurewicz and Ziemian (JLMS 1991) introduced several
rotation sets to measure ”global”displacement of points in Td

1. Pointwise rotation set

ρp(F ) :=
⋃
x∈Td

ρ(F , x)

2. (Ergodic) measure rotation set

ρerg (F ) :=
{∫

φF dµ : µ ∈Merg (Td)
}

3. Rotation set

ρ(F ) := accumulation vectors of
(F ni (x̃i )− x̃i

ni

)
i≥1

Rmk:

1. ρerg (F ) ⊆ ρp(F ) ⊆ ρ(F )

2. Good news: ρ(F ) always connected

3. ρinv (F ) = ρerg (F )
co

= ρp(F )
co

= ρ(F )
co

convex sets
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Some questions

• What is the shape of rotation sets, persistence, and what does
it say about the dynamics?

• Can one characterize the subsets of Rd that can be realizable
as rotation sets of homeomorphisms?

• How to characterize the complexity of the set of points with a
certain rotation vector (i.e. level sets)?

• What about the set of points with wild historic behavior
(largest non-trivial pointwise rotation set)?



Some results on realization
Dimension d = 2 (Franks 88’, 89’, Llibre-Mackay 91’, Misiurewicz-Ziemian 91’, Kwapisz 92’)

• ρ(F ) is convex

• ∀K ⊂ R2 convex there is f ∈ Homeo0(T2) s.t. ρ(F ) = K

• Homeo0(T2) 3 f 7→ ρ(F ) is upper semicontinuous (Hausdorff metric)

• if f ∈ Homeo0(T2) then

a. (0, 0) ∈ ρerg (F ) ⇒ Fix(F ) 6= ∅
b. v ∈ interior(ρ(F )) ∩Q2 ⇒ exists p ∈ Per(f ) s.t. ρ(F , p) = v

c. v ∈ extremal(ρ(F )) ∩Q2 ⇒ exists p ∈ Per(f ) s.t. ρ(F , p) = v

• if int(ρ(F )) 6= ∅, then htop(f ) > 0

• for any connected C ⊂ ρ(F ) there is x ∈ T2 s.t. ρ(F , x) = C

Dimension d ≥ 3

• there exists f ∈ Homeo0(T3) so that ρ(F ) is not convex

• ...



Some results on realization
Dimension d = 2 (Franks 88’, 89’, Llibre-Mackay 91’, Misiurewicz-Ziemian 91’, Kwapisz 92’)

• ρ(F ) is convex

• ∀K ⊂ R2 convex there is f ∈ Homeo0(T2) s.t. ρ(F ) = K

• Homeo0(T2) 3 f 7→ ρ(F ) is upper semicontinuous (Hausdorff metric)

• if f ∈ Homeo0(T2) then

a. (0, 0) ∈ ρerg (F ) ⇒ Fix(F ) 6= ∅
b. v ∈ interior(ρ(F )) ∩Q2 ⇒ exists p ∈ Per(f ) s.t. ρ(F , p) = v

c. v ∈ extremal(ρ(F )) ∩Q2 ⇒ exists p ∈ Per(f ) s.t. ρ(F , p) = v

• if int(ρ(F )) 6= ∅, then htop(f ) > 0

• for any connected C ⊂ ρ(F ) there is x ∈ T2 s.t. ρ(F , x) = C

Dimension d ≥ 3

• there exists f ∈ Homeo0(T3) so that ρ(F ) is not convex

• ...



Some results on realization
Dimension d = 2 (Franks 88’, 89’, Llibre-Mackay 91’, Misiurewicz-Ziemian 91’, Kwapisz 92’)

• ρ(F ) is convex
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• ...

Rmk: No characterization of the ”size”of points with historic
behavior



Main results

0. Some definitions

I. Structure of points with historic
behavior

II. Shape & stability in higher dimension

III. Extremal vectors and maximizing
measures



0. Some definitions
(X , d) compact metric space, f : X → X continuous

Topological entropy

htop(f ) = lim
ε→0

lim supn→∞
1

n
log s(n, ε)

where s(n, ε) is maximal cardinality of a (n, ε)-separated subset.

If Z ⊂ X is f -invariant, define by a Carathéodory structure

hZ (f , ψ) = lim
ε→0

hZ (f , ε)

where

hZ (f , ε) = inf{s ∈ R : m(Z , s, ε) = 0}
and

M(Z , s, ε,N)=inf
Γ

{∑
B∈Γ

e−s n(B)

}
,

where the infimum is taken over all countable collections Γ by
dynamical balls B of radius ε and length n(B) ≥ N.
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0. Some definitions

Rmk: C 0-generic homeomorphisms have infinite topological
entropy (Yano 80’)

Metric mean dimension (Lindenstrauss and Weiss)

mdimM(f ) = lim inf
ε→0

lim supn→∞
1
n log s(n, ε)

− log ε
∈ [0, dimB(X , d)]

which is non-zero only if f has infinite topological entropy.



0. Some definitions

Given f ∈ Homeo0(Td), a lift F and x ∈ Td , the pointwise rotation
set ρ(F , x) is non-trivial if ρ(F , x) 6= {v} for some v ∈ Rd

We say the pointwise rotation set ρ(F , x) is wild if

ρ(F , x) = ρp(F )

Rmk:

1. ρ(F , x) ⊆ ρp(F ) for all x ∈ Td

2. it is necessary that ρp(F ) is connected in order to exist points
with wild rotation sets
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I. Structure of points with historic behavior

Theorem A
• Volume preserving: there exists R1 ⊂ Homeo0,λ(T2) Baire residual so
that for every f ∈ R1 (and lift F )

(i) ρp(F ) is connected;

(ii) {x ∈ T2 : ρ(F , x) = ρp(F ) is non-trivial} is Baire residual, has full
topological pressure and full metric mean dimension.

• Non-volume preserving: there exists a Baire residual subset
R2 ⊂

{
f ∈ Homeo0(T2) : int(ρ(F )) 6= ∅

}
so that if f ∈ R2, there exists

a positive entropy chain recurrent class Γ ⊂ Ω(f ) so that

{x ∈ Γ: ρ(F , x) is non-trivial}

is a Baire residual, full topological pressure and full metric mean
dimension subset of Γ.
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II. Shape & stability in higher dimension

Theorem B For any d ≥ 2 there exists a C 0-open and dense
subset of Homeo0(Td) (and Homeo0,λ(Td)) formed by
homeomorphisms whose rotation sets are stable, convex polyhedra
with rational vertices. Moreover, in the volume preserving case the
polyhedra have non-empty interior.

Rmk: Homeomorphisms with exceptional rotation sets do exist
(Misiurewicz-Ziemian 1991’)



III. Ergodic optimization

Theorem C Let d ≥ 2 there exists a C 0-open and dense
subset of homeomorphisms in Homeo0(Td) (and Homeo0,λ(Td))
so that every extremal vector v ∈ ρ(F ) is only realizable by
periodic points. In particular

Hv :=
{

x ∈ Td : v ∈ ρ(F , x)
}

has zero topological entropy.



Ideas in the proof(s)

Theorem B (volume preserving) For any d ≥ 2 there
exists a C 0-open and dense subset of Homeo0,λ(Td) formed by
homeomorphisms whose rotation sets are stable, convex polyhedra
with rational vertices and non-empty interior.



Ideas in the proof(s)

Theorem B (volume preserving) For any d ≥ 2 there
exists a C 0-open and dense subset of Homeo0,λ(Td) formed by
homeomorphisms whose rotation sets are stable, convex polyhedra
with rational vertices and non-empty interior.



Step 1: Convexity of rotation sets is C 0-generic
Take d ≥ 2 arbitrary (the theorem is known when d = 2)

Proposition 1: There exists a Baire residual R3 ⊂ Homeo0,λ(Td)
so that every f ∈ R3 has convex rotation sets.

Proof.

• C 0-generic homeomorphisms satisfy the specification property
(Guilheneuf-Lefeuvre)

• The set of all periodic measures is dense in Mf (Td) in the
weak∗ topology (Sigmund)

• Since ρinv (F ) = ρerg (F )
co

= ρ(F )
co

we conclude that

ρinv (F ) = ρerg (F ) = ρ(F ) = ρ(F ) (the rotation set is compact)

• Convexity follows
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Step 2: Stability and realization of extremal rational
vectors is C 0-generic

(after Franks 88’, Addas-Zanata 04’)

Proposition 2: There exists a residual subset R4 ⊂ Homeo0,λ(Td)
such that if f ∈ R every extremal vector v ∈ ρ(F ) is rational and
realizable (only) by periodic points.

Proof.

• C 0-generic homeomorphisms satisfy the shadowing property
(Kóscielniak-Mazur-Oprocha-Pilarczyk)

• f satisfies the shadowing property ⇒ the rotation sets are
upper-stable: there exists δ > 0 such that if dC0(F ,G ) < δ
then ρ(G ) ⊆ ρ(F )

• Key Lemma: if ρ(F ) is δ-upper stable then all extremal
vectors are rational and for every v ∈ ρ(F ) extremal there are
no non-atomic probabilities µ so that ρ(F , µ) = v (uses Atkinson’s

lemma & Hahn-Banach geometric theorem)
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Step 3: From C 0-generic to C 0-open and dense
(after Guilheneuf-Koropecki 17’)

Proof of Theorem B (volume preserving).

• It is enough to prove C 0-denseness of

OH = {f ∈ Homeo0,λ(Td) : f has rotation sets which are stable,

convex polyhedra with non-empty interior}

• Given f ∈ Homeo0,λ(Td) and ε > 0 take g ∈ R3 ∩R4 that is
ε-C 0-close to f , ρ(G ) is δ-upper-stable for some δ > 0 and
every extremal vector v ∈ ρ(F ) is realizable by periodic points

• Extremal vectors are finite (hence ρ(G ) is rational
polyhedron) (Guilheneuf-Koropecki 17’)

• Take ε-C 0-small perturbation H of G such that
”boundary”periodic points are preserved and become stable
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Step 3: From C 0-generic to C 0-open and dense

Proof of Theorem B (volume preserving).

• It is enough to prove C 0-denseness of

OH = {f ∈ Homeo0,λ(Td) : f has rotation sets which are stable,

convex polyhedra with non-empty interior}

• ρ(G ) has non-empty interior: otherwise, take a suitable
perturbation Tv ◦ G of G in such a way that

ρ(Tv ◦ G , λ) = v + ρ(G , λ) /∈ ρ(G )

(contradition with stability)



Happy Birthday Micha l

“Mathematics is the most beautiful and most powerful
creation of the human spirit- Stephan Banach


