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Definition (Alsedà-Misiurewicz systems)

An AM-system is the system {f−, f+}
of increasing homeomorphisms of the
interval [0, 1] of the form

f−(x) =

{
a−x for x ∈ [0, x−]

1− b−(1− x) for x ∈ (x−, 1]

f+(x) =

{
b+x , x ∈ [0, x+]

1− a+(1− x), x ∈ (x+, 1]

where
0 < a− < 1 < b−,

0 < a+ < 1 < b+

and

x− =
b− − 1

b− − a−
,

x+ =
1− a+

b+ − a+
.
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(p−, p+) - probability vector. Assume

Λ(0) := p+ log b+ + p− log a− > 0,
Λ(1) := p+ log a+ + p− log b− > 0.

∃! Borel probability measure µ on
[0, 1] such that

µ = p−(f−)∗µ+ p+(f+)∗µ

and µ({0, 1}) = 0.

µ is either singular or absolutely
continuous w.r.t. Lebesgue measure.

Task: determine which possibility
occurs. If µ is singular, determine

dimH(µ).

Alsedà and Misiurewicz conjectured
that typically measure µ should be

singular.

Results: Singularity and dimension
calculation/bounds for certain sets

of parameters.
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Alsedà and Misiurewicz conjectured
that typically measure µ should be

singular.

Results: Singularity and dimension
calculation/bounds for certain sets

of parameters.
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Groups of circle diffeomorphisms

Navas, Question 181: Singularity vs absolute continuity for
finitely-generated groups G of C 2 orientation-preserving circle
diffeomorphisms.

Results in the direction of singularity for some specific groups:
Furstenberg; Guivarc’h and Le Jan (conjecture of Guivarc’h, Kaimanovich
and Ledrappier); Deroin, Kleptsyn and Navas.

Navas, Question 16: Assume that G admits an exceptional minimal set
Λ. Is the restriction of the action G to Λ topologically conjugated to the
action of a group of piecewise-affine homeomorphisms? (conjecture of
Dippolito)

1Group actions on 1-manifolds: a list of very concrete open questions - ICM 2018
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Definition

We say that an AM-system {f−, f+} is of:

– disjoint type, if the intervals [0, f−(x−)], [f+(x+), 1] are disjoint,
i.e. f−(x−) < f+(x+),

– border type, if the intervals [0, f−(x−)], [f+(x+), 1] touch each
other, i.e. f−(x−) = f+(x+),

– overlapping type, if the intervals [0, f−(x−)], [f+(x+), 1] overlap,
i.e. f−(x−) > f+(x+).

f−(x−)f+(x+)
f+(x+)

f−(x−)
f+(x+)

f−(x−)

Figure: Three types of AM-systems: disjoint, border and overlapping.
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Let I : [0, 1]→ [0, 1], I(x) = 1− x .

We say that {f−, f+} is symmetric if f+ ◦ I = I ◦ f−.

Theorem 1

Let {f−, f+} be an AM-system with probabilities p−, p+, such that the
Lyapunov exponents Λ(0),Λ(1) are positive. Then the stationary measure
µ is the Lebesgue measure on [0, 1] if and only if the system is of border
type and

p−
a−

+
p+

b+
= 1.

In this case we also have p−
b−

+ p+

a+
= 1.

For symmetric systems with p− = p+ = 1
2 this gives µ = Leb |[0,1] if and

only if f+(x+) = f−(x−) = 1
2 .
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Definition

We say that that an AM-system {f−, f+} exhibits a resonance at the
point 0, if

ln f ′+(0)

ln f ′−(0)
∈ Q.

More precisely, a (k : l)-resonance at 0 occurs for k, l ∈ N if

ln f ′+(0)

ln f ′−(0)
= −k

l
,

which is equivalent to

a− = f ′−(0) = ρl , b+ = f ′+(0) = ρ−k for some ρ ∈ (0, 1).

Analogously, a (k : l)-resonance at 1 occurs if
ln f ′−(1)

ln f ′+(1) = − k
l . Without

loss of generality, we always assume that k, l are relatively prime.
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Proposition

If an AM-system with positive Lyapunov exponents has no resonance at
one of the endpoints 0, 1, then it is minimal in (0, 1) and the support of
µ is equal to [0, 1].

Theorem 2

Let {f−, f+} be a symmetric AM-system with positive Lyapunov
exponents. If the system exhibits (k : l)-resonance for some k, l ∈ N,
k > l and satisfies ρ < η where η ∈ (1/2, 1) is the unique solution of the
equation

ηk+l − 2ηk+1 + 2η − 1 = 0,

then the stationary measure µ is singular with

dimH(suppµ) =
log η

log ρ
< 1.

The condition ρ < η implies that the system is of disjoint type. In the
case l = 1 it is equivalent to being of disjoint type.
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Proof of Theorem 2 - case l = 1

x+ f−(x−)

f+(x+) x−

f+(x) = ρ−kx

f−

I−1 = f−([f+(x+), ρx−]) = [ρf+(x+), x−]

I−j = f j−1
− (I−1) = ρj−1I−1

Ij = I(I−j)

Adam Śpiewak Singular stationary measures for AM-sytems



Proof of Theorem 2 - case l = 1

x+ f−(x−)

f+(x+) x−

f+(x) = ρ−kx

f−

I−1 = f−([f+(x+), ρx−]) = [ρf+(x+), x−]

I−j = f j−1
− (I−1) = ρj−1I−1

Ij = I(I−j)
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Dimension of µ

Theorem 3

Let {f−, f+} be a symmetric AM-system of disjoint type with probabilities
p−, p+, such that the Lyapunov exponents are positive. If the system
exhibits (k : 1)-resonance for some k ∈ {2, 3, . . .}, then

dimH µ =

k∑
r=1

r
(

p+

p−
ηr− log η− + p−

p+
ηr+ log η+

)
k∑

r=1
r
(

p+

p−
ηr− + p−

p+
ηr+

)
log ρ

,

where η−, η+ ∈ (0, 1) are, respectively, the unique solutions of the
equations

p+η
k+1
− − η− + p− = 0, p−η

k+1
+ − η+ + p+ = 0.

In particular, if p− = p+ = 1/2, then

dimH µ = dimH(suppµ) =
log η

log ρ
< 1.
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Adam Śpiewak Singular stationary measures for AM-sytems



Dimension of µ

Theorem 3

Let {f−, f+} be a symmetric AM-system of disjoint type with probabilities
p−, p+, such that the Lyapunov exponents are positive. If the system
exhibits (k : 1)-resonance for some k ∈ {2, 3, . . .}, then

dimH µ =

k∑
r=1

r
(

p+

p−
ηr− log η− + p−

p+
ηr+ log η+

)
k∑

r=1
r
(

p+

p−
ηr− + p−

p+
ηr+

)
log ρ

,

where η−, η+ ∈ (0, 1) are, respectively, the unique solutions of the
equations

p+η
k+1
− − η− + p− = 0, p−η

k+1
+ − η+ + p+ = 0.

In particular, if p− = p+ = 1/2, then

dimH µ = dimH(suppµ) =
log η

log ρ
< 1.
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Case l > 1

For l > 1, supp(µ) is a disjoint union of pairwise similar Cantor sets,
which are generated by an infinite self-similar IFS on R.

These copies are located in [0, 1] in a more complicated manner,
accumulating on another Cantor set.

For p− = p+ = 1
2 , measure µ on each of these Cantor sets is (up to

normalization) a self-similar measure.
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For symmetric systems with p− = p+ = 1/2 and l = 1, we have ρ = η if
and only if µ = Leb |[0,1] .

Theorem 4

If a symmetric AM-system with probabilities p− = p+ = 1/2 and positive
Lyapunov exponents exhibits (5 : 2)-resonance and satisfies ρ = η, then µ
is singular with

dimH µ < 1, suppµ = [0, 1].

Theorem 5

Let {f−, f+}, {g−, g+} be symmetric AM-systems of disjoint type. If
both systems exhibit (k : l)-resonance for some k , l ∈ N, k > l , and
satisfy ρ < η, then they are topologically conjugated, i.e. there exists an
increasing homeomorphism h : [0, 1]→ [0, 1] such that

g− ◦ h = h ◦ f−, g+ ◦ h = h ◦ f+.
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Consider now the following family of
symmetric AM-systems:

f−(x) =

{
ρx , x ∈ [0, x−]

ρ−γx + 1− ρ−γ , x ∈ (x−, 1]
,

f+(x) =

{
ρ−γx for x ∈ [0, x+]

ρx + 1− ρ for x ∈ (x+, 1]
,

where ρ ∈ (0, 1), γ > 1 and

x+ =
1− ρ
ρ−γ − ρ

,

x− =
ρ−γ − 1

ρ−γ − ρ
.

f−

f+

x+ x−

ρ−γ

ρ

ρ

ρ−γ

0 1

Note: γ = − ln f ′+(0)

ln f ′−(0) . Assume p− = p+ = 1
2 . Then Λ(0) = Λ(1) > 0.

Let µρ,γ be the corresponding stationary measure.
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Adam Śpiewak Singular stationary measures for AM-sytems



Consider now the following family of
symmetric AM-systems:

f−(x) =

{
ρx , x ∈ [0, x−]

ρ−γx + 1− ρ−γ , x ∈ (x−, 1]
,

f+(x) =

{
ρ−γx for x ∈ [0, x+]

ρx + 1− ρ for x ∈ (x+, 1]
,

where ρ ∈ (0, 1), γ > 1 and

x+ =
1− ρ
ρ−γ − ρ

,

x− =
ρ−γ − 1

ρ−γ − ρ
.

f−

f+

x+ x−

ρ−γ

ρ

ρ

ρ−γ

0 1

Note: γ = − ln f ′+(0)

ln f ′−(0) . Assume p− = p+ = 1
2 . Then Λ(0) = Λ(1) > 0.

Let µρ,γ be the corresponding stationary measure.
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Theorem 6 (work in progress)

Fix γ ∈ (1, 3
2 ). For ρ sufficiently small, the corresponding measure µρ,γ is

singular with dimH(µρ,γ) < 1.

Consequently, there exists an open set of
parameters such that dimH(µ) < 1

The above theorem includes cases
ln f ′+(0)

ln f ′−(0) /∈ Q.

For a probability vector (p−, p+), let

H((p−, p+)) := −p− log p− − p+ log p+,

χ(µ) :=

ˆ

[0,1]

(p− log f ′−(x) + p+ log f ′+(x))dµ(x).

We use the following general upper bound:

dimH(µρ,γ) ≤ −H((p−, p+))

χ(µρ,γ)
,

provided χ(µρ,γ) < 0.
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Adam Śpiewak Singular stationary measures for AM-sytems



Theorem 6 (work in progress)

Fix γ ∈ (1, 3
2 ). For ρ sufficiently small, the corresponding measure µρ,γ is

singular with dimH(µρ,γ) < 1.Consequently, there exists an open set of
parameters such that dimH(µ) < 1

The above theorem includes cases
ln f ′+(0)

ln f ′−(0) /∈ Q.

For a probability vector (p−, p+), let

H((p−, p+)) := −p− log p− − p+ log p+,

χ(µ) :=

ˆ

[0,1]

(p− log f ′−(x) + p+ log f ′+(x))dµ(x).

We use the following general upper bound:

dimH(µρ,γ) ≤ −H((p−, p+))

χ(µρ,γ)
,

provided χ(µρ,γ) < 0.
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singular with dimH(µρ,γ) < 1.Consequently, there exists an open set of
parameters such that dimH(µ) < 1

The above theorem includes cases
ln f ′+(0)

ln f ′−(0) /∈ Q.

For a probability vector (p−, p+), let

H((p−, p+)) := −p− log p− − p+ log p+,

χ(µ) :=

ˆ

[0,1]

(p− log f ′−(x) + p+ log f ′+(x))dµ(x).

We use the following general upper bound:

dimH(µρ,γ) ≤ −H((p−, p+))

χ(µρ,γ)
,

provided χ(µρ,γ) < 0.
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In our case

χ(µρ,γ) = (
1− γ

2
+ µρ,γ(M)

1 + γ

2
) log ρ,

where M = [x+, x−].

Idea: use Kac’s Lemma and bound the expected return time to M.

This can be done, as outside of M the system behaves as a random walk.
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Thank you for your attention!
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