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Definition (Alseda-Misiurewicz systems)

An AM-system is the system {f_, 7.}
of increasing homeomorphisms of the
interval [0, 1] of the form

f(x) = X for x € [0, x_]
1—b_(1—x) forxe(x_,1]
b 0
f+(X): X, XE[ ,X+]
1—a.(1-x), xé€(xg,1]
where
0< <l<b_,
0<a, <l<by
and
. = b_—1
= b
. — 1—3+
T b+—a+.
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0 X4 X; 1

(p—, p+) - probability vector.
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0 X4 X; 1

(p—, p+) - probability vector. Assume

A(0) := pi log by + p_loga- >0,
A1) :=piloga. + p_logb_ > 0.
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3! Borel probability measure 1 on
[0, 1] such that

= p—(f=)spt + p+(fi)upt

and p({0,1}) =0.
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(p—, p+) - probability vector. Assume

A(0) := pi log by + p_loga- >0,
A1) :=piloga. + p_logb_ > 0.
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0

X+

X_

1

(p—, p+) - probability vector. Assume

A(0) := pi log by + p_loga- >0,

A(1) := p log

+ p_logb_ > 0.
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3! Borel probability measure 1 on
[0, 1] such that

= p—(f=)spt + p+(fi)upt

and p({0,1}) =0.

w is either singular or absolutely
continuous w.r.t. Lebesgue measure.
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X4 X_ 1

(p—, p+) - probability vector. Assume

A(0) := pi log by + p_loga- >0,
A1) :=piloga. + p_logb_ > 0.
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3! Borel probability measure 1 on
[0, 1] such that

= p—(f=)spt + p+(fi)upt

and p({0,1}) =0.

w is either singular or absolutely
continuous w.r.t. Lebesgue measure.

Task: determine which possibility
occurs.
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0

X4 X_ 1

(p—, p+) - probability vector. Assume

A(0) := pi log by + p_loga- >0,
A1) :=piloga. + p_logb_ > 0.
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3! Borel probability measure 1 on
[0, 1] such that

= p—(f=)spt + p+(fi)upt

and p({0,1}) =0.
w is either singular or absolutely

continuous w.r.t. Lebesgue measure.

Task: determine which possibility
occurs. If u is singular, determine
dimy(p).
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X4 X_ 1

(p—, p+) - probability vector. Assume

A(0) := pi log by + p_loga- >0,
A1) :=piloga. + p_logb_ > 0.
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3! Borel probability measure 1 on
[0, 1] such that

= p—(f=)ept + py (i )upt

and p({0,1}) =0.

w is either singular or absolutely
continuous w.r.t. Lebesgue measure.

Task: determine which possibility
occurs. If u is singular, determine
dimy(p).

Alseda and Misiurewicz conjectured

that typically measure p should be
singular.
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0

X4 X_ 1

(p—, p+) - probability vector. Assume

A(0) := py log by + p_ log
A(1) := p log

>0,
+ p_logb_ > 0.
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3! Borel probability measure 1 on
[0, 1] such that

= p—(f=)ept + py (i )upt

and p({0,1}) =0.

w is either singular or absolutely
continuous w.r.t. Lebesgue measure.

Task: determine which possibility
occurs. If u is singular, determine
dimy(p).

Alseda and Misiurewicz conjectured
that typically measure p should be
singular.

Results: Singularity and dimension
calculation/bounds for certain sets

of parameters.
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Groups of circle diffeomorphisms

Navas, Question 18!: Singularity vs absolute continuity for
finitely-generated groups G of C? orientation-preserving circle
diffeomorphisms.

L Group actions on 1-manifolds: a list of very concrete open questions - ICM 2018
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Groups of circle diffeomorphisms

Navas, Question 18!: Singularity vs absolute continuity for
finitely-generated groups G of C? orientation-preserving circle
diffeomorphisms.

Results in the direction of singularity for some specific groups:
Furstenberg; Guivarc'h and Le Jan (conjecture of Guivarc'h, Kaimanovich
and Ledrappier); Deroin, Kleptsyn and Navas.

L Group actions on 1-manifolds: a list of very concrete open questions - ICM 2018
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Groups of circle diffeomorphisms

Navas, Question 18!: Singularity vs absolute continuity for
finitely-generated groups G of C? orientation-preserving circle
diffeomorphisms.

Results in the direction of singularity for some specific groups:
Furstenberg; Guivarc'h and Le Jan (conjecture of Guivarc'h, Kaimanovich
and Ledrappier); Deroin, Kleptsyn and Navas.

Navas, Question 16: Assume that G admits an exceptional minimal set
A. Is the restriction of the action G to A topologically conjugated to the
action of a group of piecewise-affine homeomorphisms? (conjecture of
Dippolito)

L Group actions on 1-manifolds: a list of very concrete open questions - ICM 2018
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Definition
We say that an AM-system {f_,f. } is of:
— disjoint type, if the intervals [0, f_(x_)], [f(x3), 1] are disjoint,
ie. F(x2) < fi(xy),
— border type, if the intervals [0, 7 (x_)], [f1(x4), 1] touch each
other, i.e. f_(x_) = fi(xy),
— overlapping type, if the intervals [0, f_(x_)], [f+(x4), 1] overlap,
i.e. f_(X_) > f+(X+).

fi(xs) f—(x-)
Bl ) fir(xs)

Figure: Three types of AM-systems: disjoint, border and overlapping.
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Let Z:[0,1] — [0,1], Z(x) =1 — x.



Let Z:[0,1] — [0,1], Z(x) =1 — x.

We say that {f_, f;} is symmetric if f o Z =Zof_.



Let Z:[0,1] — [0,1], Z(x) =1 — x.
We say that {f_, f,} is symmetric if fL cZ =T of_.

Theorem 1

Let {f_, f;} be an AM-system with probabilities p_, p;, such that the
Lyapunov exponents A(0),A(1) are positive. Then the stationary measure
u is the Lebesgue measure on [0, 1] if and only if the system is of border
type and

P— | P+

— =1.
a_+b+

In this case we also have Z—* + ";L: =1.
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Let Z:[0,1] — [0,1], Z(x) =1 — x.
We say that {f_, f,} is symmetric if fL cZ =T of_.

Theorem 1

Let {f_, f;} be an AM-system with probabilities p_, p;, such that the
Lyapunov exponents A(0),A(1) are positive. Then the stationary measure
u is the Lebesgue measure on [0, 1] if and only if the system is of border
type and

P— | P+

— =1.
a_+b+

In this case we also have g; + ;L: =1.

For symmetric systems with p_ = p; = % this gives u = Leb [[o,1) if and

only if fi(x;) = f-(x=) = 3.

Adam Spiewak Singular stationary measures for AM-sytems



We say that that an AM-system {f_, f. } exhibits a resonance at the
point 0, if

In £ (0)
7o) €@




Definition
We say that that an AM-system {f_, f. } exhibits a resonance at the
point 0, if

In £7(0)

nf (o) <%

More precisely, a (k : /)-resonance at 0 occurs for k, | € N if

In £/ (0) k

Inf’ (0) I’
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Definition
We say that that an AM-system {f_, f. } exhibits a resonance at the
point 0, if

In £} (0)

nf (o) <%

More precisely, a (k : /)-resonance at 0 occurs for k,/ € N if

In £/ (0) k

Inf’ (0) I’

which is equivalent to

a_=f'(0)=p/, by = (0) = p* for some p € (0,1).
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Definition
We say that that an AM-system {f_, f. } exhibits a resonance at the

point 0, if
In £} (0)

In /. (0)

More precisely, a (k : /)-resonance at 0 occurs for k,/ € N if

€ Q.

In £/ (0) k

Inf’ (0) I’

which is equivalent to
a_=f(0)=p, by =f(0) = p~ ¥ for some p € (0,1).

Analogously, a (k : /)-resonance at 1 occurs if % =k
+
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Definition
We say that that an AM-system {f_, f. } exhibits a resonance at the

point 0, if
In £} (0)

In £”(0)

More precisely, a (k : /)-resonance at 0 occurs for k,/ € N if

€ Q.

In £/ (0) k

Inf’ (0) I’

which is equivalent to

a_=f(0)=p, by =f(0) = p~ ¥ for some p € (0,1).

Analogously, a (k : /)-resonance at 1 occurs if | f/((ll)) = —k. Without
loss of generality, we always assume that k, | are relatively prime.

Adam Spiewak Singular stationary measures for AM-sytems



If an AM-system with positive Lyapunov exponents has no resonance at
one of the endpoints 0, 1, then it is minimal in (0,1) and the support of
w is equal to [0,1].




If an AM-system with positive Lyapunov exponents has no resonance at
one of the endpoints 0, 1, then it is minimal in (0,1) and the support of
w is equal to [0,1].

Let {f_,f;} be a symmetric AM-system with positive Lyapunov
exponents.




Proposition

If an AM-system with positive Lyapunov exponents has no resonance at
one of the endpoints 0, 1, then it is minimal in (0,1) and the support of
w is equal to [0,1].

Theorem 2

Let {f_,f;} be a symmetric AM-system with positive Lyapunov
exponents. If the system exhibits (k : /)-resonance for some k,/ € N,
k>1
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Proposition

If an AM-system with positive Lyapunov exponents has no resonance at
one of the endpoints 0, 1, then it is minimal in (0,1) and the support of
w is equal to [0,1].

Theorem 2

Let {f_,f;} be a symmetric AM-system with positive Lyapunov
exponents. If the system exhibits (k : /)-resonance for some k,/ € N,
k > | and satisfies p < 1 where 1 € (1/2,1) is the unique solution of the

equation
,rlk+/ _ 2nk+1 + 277 _ 1 — O,
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Proposition

If an AM-system with positive Lyapunov exponents has no resonance at
one of the endpoints 0, 1, then it is minimal in (0,1) and the support of
w is equal to [0,1].

Theorem 2

Let {f_,f;} be a symmetric AM-system with positive Lyapunov
exponents. If the system exhibits (k : /)-resonance for some k,/ € N,

k > | and satisfies p < 1 where 1 € (1/2,1) is the unique solution of the

equation
,rlk+/ _ 2nk+1 + 277 _ 1 — O,

then the stationary measure i is singular
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Proposition

If an AM-system with positive Lyapunov exponents has no resonance at
one of the endpoints 0, 1, then it is minimal in (0,1) and the support of
w is equal to [0,1].

Theorem 2

Let {f_,f;} be a symmetric AM-system with positive Lyapunov
exponents. If the system exhibits (k : /)-resonance for some k,/ € N,
k > | and satisfies p < 1 where 1 € (1/2,1) is the unique solution of the
equation

g — okl L op 1=,

then the stationary measure y is singular with

dimpy(supp p) = —— <
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Proposition

If an AM-system with positive Lyapunov exponents has no resonance at
one of the endpoints 0, 1, then it is minimal in (0,1) and the support of
w is equal to [0,1].

Theorem 2

Let {f_,f;} be a symmetric AM-system with positive Lyapunov
exponents. If the system exhibits (k : /)-resonance for some k,/ € N,
k > | and satisfies p < 1 where 1 € (1/2,1) is the unique solution of the
equation

g — okl L op 1=,

then the stationary measure y is singular with

dimpy(supp p) = —— <

The condition p < n implies that the system is of disjoint type.
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Proposition

If an AM-system with positive Lyapunov exponents has no resonance at
one of the endpoints 0, 1, then it is minimal in (0,1) and the support of
w is equal to [0,1].

Theorem 2

Let {f_,f;} be a symmetric AM-system with positive Lyapunov
exponents. If the system exhibits (k : /)-resonance for some k,/ € N,
k > | and satisfies p < 1 where 1 € (1/2,1) is the unique solution of the
equation

g — okl L op 1=,

then the stationary measure y is singular with

dimy(supp ) = = L

The condition p < n implies that the system is of disjoint type. In the
case | =1 it is equivalent to being of disjoint type.
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Proof of Theorem 2 - case /| =1



Proof of Theorem 2 - case /| =1



Proof of Theorem 2 - case /| =1

()

fy (;<+) X—




Proof of Theorem 2 - case /| =1

X f-(x-)

I-y = £ ([f-(x), x-]) = [pfr(x4), px-]
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Proof of Theorem 2 - case /| =1

xi F(x)

/,j = fiﬁl(lfl) = pj71/,1
I-y = - ([f-(x), x-]) = [pfr(x4), px-]



Proof of Theorem 2 - case /| =1

X f-(x-)
kal Ifk /72 /71
N N fi(xs) x_
fo f \/
f—(x) = px

/,j = fiﬁl(lfl) = pj71/,1
Iy = F([f+ (x4), x-]) = [pfi-(x4), px-]
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Proof of Theorem 2 - case /| =1

fr
X4 /m
I_k—1 Ik I 11 h
N N fo(xy) x_
f_ f_
f—(x) = px

/,j = fiﬁl(lfl) = pj71/,1
I-y = £ ([f-(x), x-]) = [pfr(x4), px-] I =1(l_;)



Proof of Theorem 2 - case /| =1

fr
£ f,
X+ f- (X— " "
I_k—1 Ik I 11 h b Ik lky1
R~ R~ fi(xy) X_
f_ f_
f—(x) = px

Ly =AYl = 0

I-y = £ ([f-(x), x-]) = [pfr(x4), px-] I =1(l_;)



Proof of Theorem 2 - case /| =1

fi(x) = p~*x
/\
fr
£ f,
X+ f- (X— " "
I_k—1 Ik I 11 h b Ik lky1
e ~ fo(xy) x_
f_ f_
f—(x) = px

/,j = fiﬁl(lfl) = pj71/,1
I-y = £ ([f-(x), x-]) = [pfr(x4), px-] I =1(l_;)
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/,j = fiﬁl(lfl) = pj71/,1
I-y = £ ([f-(x), x-]) = [pfr(x4), px-] I =1(l_;)



Proof of Theorem 2 - case /| =1

fi(x) = p~*x
/\}
/\ f+
X+ /\ P
I_k—1 Ik I lkt1
N '\_/ X4t X_
f_ f_ \/
f—(x) = px .
— - @O

/,j = fiﬁl(lfl) = pj71/,1
I-y = £ ([f-(x), x-]) = [pfr(x4), px-] I =1(l_;)



Proof of Theorem 2 - case /| =1

fi(x) = p~*x
/\}
/\ f+
X+ /\ P
I_k—1 Ik I lkt1
N '\_/ X4t X_
f_ f_ \—/
f—(x) = px .
— - @O

/,j = fiﬁl(lfl) = pj71/,1
I-y = £ ([f-(x), x-]) = [pfr(x4), px-] I =1(l_;)



Proof of Theorem 2 - case /| =1

fi(x) = p~*x
/—\
/\ f+
X+ /\ P
I_k—1 Ik I lkt1
N \_/ X4t X_
f_ f_ \—/
f—(x) = px .
— - @O

/,j = fiﬁl(lfl) = pj71/,1
I-y = £ ([f-(x), x-]) = [pfr(x4), px-] I =1(l_;)



Proof of Theorem 2 - case /| =1

fi(x) = p~*x
/\}
fy
X+ X— /\ N
T B
N~ \/ X_
f_ f_ \/
f—(x) = px
G
Ly =N = Py
1 = ([ () ]) = [of (). o] b= 701
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Proof of Theorem 2 - case [ =1

fi(x) = p~*x
/—\
/\ f+
X+ X— /\ T~
I,k,1 I,k Ik Ik+1
N \_/ X+ X_
f_ f_ \/
f—(x) = px .
- -

A = union of Cantor sets.
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Proof of Theorem 2 - case [ =1

fi(x) = p~*x
/\}
/\ f+
X+ X— /\ T~
I,k,1 I,k Ik Ik+1
N \_/ X+ X_
f_ f_ \/
f—(x) = px .
- -

A = union of Cantor sets. Claim: A = AU {0,1} = w.o(x) for x € (0,1)
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Proof of Theorem 2 - case [ =1

fi(x) = p~*x
/\}
X+ X— /\ T~
I,k,1 I,k Ik Ik+1
N \_/ X+ X_
f_ f_ k/
f—(x) = px .
- -

A = union of Cantor sets. Claim: A = AU {0,1} = w.o(x) for x € (0,1)

Weo(x) = {limit points of trajectiories of x jumping over the interval
(f—(x2), fr(x4)) infinitely many times}
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Dimension of p



Dimension of p

Let {f_,f.} be a symmetric AM-system of disjoint type with probabilities
p—, p+, such that the Lyapunov exponents are positive.

—



Dimension of u

Theorem 3

Let {f_,f.} be a symmetric AM-system of disjoint type with probabilities
p—, p+, such that the Lyapunov exponents are positive. If the system
exhibits (k : 1)-resonance for some k € {2,3,...}, then
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Dimension of u

Theorem 3

Let {f_,f.} be a symmetric AM-system of disjoint type with probabilities
p—, p+, such that the Lyapunov exponents are positive. If the system
exhibits (k : 1)-resonance for some k € {2,3,...}, then

> r(;’%n’_ logn— + 2=nf, |ogn+)
dimy p = =L

k b
P+ r P— r
r:er(p_ ne+ o m) log p
where n_,ny € (0,1) are, respectively, the unique solutions of the
equations

pnt —n_+p-=0, pktt—ni+p =0,
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Dimension of u

Theorem 3

Let {f_,f.} be a symmetric AM-system of disjoint type with probabilities
p—, p+, such that the Lyapunov exponents are positive. If the system
exhibits (k : 1)-resonance for some k € {2,3,...}, then

> r(;’%n’_ logn— + 2=nf, |ogn+)

r=1

dimy p = p )

P+ r P— r
r:er(p_ ne+ o m) log p
where n_,ny € (0,1) are, respectively, the unique solutions of the
equations

pyntt —m_+p_ =0, ppftt—ni+py=0.
In particular, if p— = p;y =1/2, then
I
dimy p = dimy/(supp ) = |Z§Z <1
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Case /| > 1



Case [ > 1

For I > 1, supp(u) is a disjoint union of pairwise similar Cantor sets,
which are generated by an infinite self-similar IFS on R.
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Case [ > 1

For I > 1, supp(u) is a disjoint union of pairwise similar Cantor sets,
which are generated by an infinite self-similar IFS on R.

These copies are located in [0, 1] in a more complicated manner,
accumulating on another Cantor set.
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Case [ > 1

For I > 1, supp(u) is a disjoint union of pairwise similar Cantor sets,
which are generated by an infinite self-similar IFS on R.

These copies are located in [0, 1] in a more complicated manner,
accumulating on another Cantor set.

For p_ = py = % measure p on each of these Cantor sets is (up to
normalization) a self-similar measure.
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For symmetric systems with p_ = p, =1/2 and | =1, we have p =7 if
and only if = Leb|jq .



For symmetric systems with p_ = p, =1/2 and | =1, we have p =7 if
and only if = Leb o1 -

Theorem 4
If a symmetric AM-system with probabilities p_— = p; = 1/2 and positive
Lyapunov exponents exhibits (5 : 2)-resonance and satisfies p = 7, then p
is singular with

dimpy p < 1, supp & = [0, 1].
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For symmetric systems with p_ = p, =1/2 and | =1, we have p =7 if
and only if = Leb o1 -

Theorem 4
If a symmetric AM-system with probabilities p_— = p; = 1/2 and positive
Lyapunov exponents exhibits (5 : 2)-resonance and satisfies p = 1), then p
is singular with

dimyp < 1, supp 1 = [0, 1].

Theorem 5
Let {f_,f}, {g_,g+} be symmetric AM-systems of disjoint type.
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For symmetric systems with p_ = p, =1/2 and | =1, we have p =7 if
and only if = Leb o1 -

Theorem 4

If a symmetric AM-system with probabilities p_— = p; = 1/2 and positive
Lyapunov exponents exhibits (5 : 2)-resonance and satisfies p = 1), then p
is singular with

dimyp < 1, supp 1 = [0, 1].

Theorem 5

Let {f_,f}, {g_,g+} be symmetric AM-systems of disjoint type. If
both systems exhibit (k : /)-resonance for some k,/ € N, k > [, and
satisfy p < n
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For symmetric systems with p_ = p, =1/2 and | =1, we have p =7 if
and only if = Leb o1 -

Theorem 4

If a symmetric AM-system with probabilities p_— = p; = 1/2 and positive
Lyapunov exponents exhibits (5 : 2)-resonance and satisfies p = 1), then p
is singular with

dimyp < 1, supp 1 = [0, 1].

Theorem 5

Let {f_,f}, {g_,g+} be symmetric AM-systems of disjoint type. If
both systems exhibit (k : /)-resonance for some k,/ € N, k > [, and
satisfy p < 7, then they are topologically conjugated
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For symmetric systems with p_ = p, =1/2 and | =1, we have p =7 if
and only if = Leb o1 -

Theorem 4

If a symmetric AM-system with probabilities p_— = p; = 1/2 and positive
Lyapunov exponents exhibits (5 : 2)-resonance and satisfies p = 1), then p
is singular with

dimyp < 1, supp 1 = [0, 1].

Theorem 5

Let {f_,f}, {g_,g+} be symmetric AM-systems of disjoint type. If
both systems exhibit (k : /)-resonance for some k,/ € N, k > [, and
satisfy p < 7, then they are topologically conjugated, i.e. there exists an
increasing homeomorphism h: [0, 1] — [0, 1] such that

g_oh=hof_, groh=hof,.
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Consider now the following family of

symmetric AM-systems:

X ,x € [0, x_] :
f(x) = o _ ) N
4 ,X—"_l_p’y 7XE(X—51] : +
p7
p X for x € [0, x4]
f—‘r(X) = ) p7
x+1—p forxe (xg,1]
where p € (0,1), v > 1 and ra
1—p
Xy = ————,
T
= P - 1. 0 X:Jr X_
P —p

Adam Spiewak Singular stationary measures for AM-sytems




Consider now the following family of

symmetric AM-systems:

fy

P

0, x_
F(x) = xﬁ ,xe[,x]7
p*,’x_;'_]__p—’y 7XE(X—51]
p7
p X for x € [0, x4]
f“r(X) = )
x+1—p forxe (xg,1]
where p € (0,1), v > 1 and
1—p
Xy = ———,
+ p*”lfp
_ = P -1 1. 0 X:+
P —p
In £/(0)

Note: Y= —m
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Consider now the following family of

symmetric AM-systems:

f(x)—{ X ,x € [0, x_]

p*“/x_;'_]__p—’y 7XE(X—51] ’ f+
ol
p X for x € [0, x]
f—‘r(X) = ) :
x+1—p forx e (x,]1]
where p € (0,1), v > 1 and .
1—p
Xy = )
T —p
= P - 1. 0 X:Jr X_
P —p
Note: v = —%. Assume p_ = p; = 3. Then A(0) = A(1) > 0.
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Consider now the following family of

symmetric AM-systems:
X ,x € [0, x_]
=97 ) , )
4 ,X—"_l_p’y 7XE(X—51] +
r?
p x for x € [0, x4]
f—‘r(X) = ) p7
x+1—p forx e (x,]1]
where p € (0,1), v > 1 and ra
1—p :
Xy = ———, ;
+ p*"/ —p o
= P - 1. 0 X:Jr x:_
P —p
Note: v = —%. Assume p_ = p; = 3. Then A(0) = A(1) > 0.

Let y,,, be the corresponding stationary measure.
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Fix v € (1,2). For p sufficiently small, the corresponding measure 1, - is
singular with dimy(,,4) < 1.




Fix v € (1, %) For p sufficiently small, the corresponding measure i, - is
singular with dimy(p,,~) < 1.Consequently, there exists an open set of
parameters such that dimgy(u) < 1




Fix v € (1,2). For p sufficiently small, the corresponding measure 1, - is
singular with dimy(p,,~) < 1.Consequently, there exists an open set of
parameters such that dimgy(u) < 1

The above theorem includes cases , f, (0) ¢ Q.



Theorem 6 (work in progress)

Fix v € (1, 2). For p sufficiently small, the corresponding measure 1, - is
singular with dimy(p,,~) < 1.Consequently, there exists an open set of
parameters such that dimpy(u) < 1

The above theorem includes cases % ¢ Q.

For a probability vector (p—, p), let

H((p-,p+)) == —p-logp— — p; log py,

x() = [ (p-10g " (x) + pi log £(x))dn(x).
[0,1]
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Theorem 6 (work in progress)

Fix v € (1, %) For p sufficiently small, the corresponding measure i, - is
singular with dimy(p,,~) < 1.Consequently, there exists an open set of
parameters such that dimpy(u) < 1

The above theorem includes cases % ¢ Q.

For a probability vector (p—, p), let

H((p-,p+)) == —p-logp— — p; log py,

x() = [ (p-10g " (x) + pi log £(x))dn(x).
[0.1]
We use the following general upper bound:

H((p-, py))

dimpy(ppy) < —
P X(MP:V)

provided x(ftp,) < O.
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In our case 1 1+
- ’Y
X(tpy) = (T + Hp (M)

where M =[x, x_].

) log p,



In our case 1 14
-7 Y
X(l‘p,'y) = (T + NP,V(M)T) log p,

where M =[xy, x_].

Idea: use Kac's Lemma and bound the expected return time to M.
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In our case 1 14
-7 Y
X(Np,'y) = (T + pr'y(M)T) log p,

where M =[xy, x_].

Idea: use Kac's Lemma and bound the expected return time to M.

This can be done, as outside of M the system behaves as a random walk.
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Thank you for your attention!



