Singular stationary measures for Alsedà-Misiurewicz systems

Adam Śpiewak

University of Warsaw

joint work with Krzysztof Barański

Conference on Dynamical Systems Celebrating Michał Misiurewicz's 70th Birthday

Kraków, June 10, 2019

Ambrosia Mexicana

Ambrosia Mexicana More or less edible

Definition (Alsedà-Misiurewicz systems)

An **AM-system** is the system $\{f_-, f_+\}$ of increasing homeomorphisms of the interval [0, 1] of the form

$$f_{-}(x) = \begin{cases} a_{-}x & \text{for } x \in [0, x_{-}] \\ 1 - \frac{b_{-}(1 - x)}{2} & \text{for } x \in (x_{-}, 1] \end{cases}$$

$$f_{+}(x) = \begin{cases} b_{+}x, & x \in [0, x_{+}] \\ 1 - a_{+}(1 - x), & x \in (x_{+}, 1] \end{cases}$$

where

$$0 < a_{-} < 1 < b_{-},$$

 $0 < a_{+} < 1 < b_{+}$

and

 $x_{-} = rac{b_{-} - 1}{b_{-} - a_{-}},$ $x_{+} = rac{1 - a_{+}}{b_{+} - a_{+}}.$

Adam Śpiewak

 \exists ! Borel probability measure μ on [0,1] such that

$$\mu = p_{-}(f_{-})_{*}\mu + p_{+}(f_{+})_{*}\mu$$

and $\mu(\{0,1\}) = 0.$

 $\exists! \text{ Borel probability measure } \mu \text{ on} \\ [0,1] \text{ such that} \end{cases}$

$$\mu = p_{-}(f_{-})_{*}\mu + p_{+}(f_{+})_{*}\mu$$

and $\mu(\{0,1\}) = 0.$

 μ is either singular or absolutely continuous w.r.t. Lebesgue measure.

$$\Lambda(0) := p_+ \log \frac{b_+}{b_+} + p_- \log a_- > 0, \ \Lambda(1) := p_+ \log a_+ + p_- \log \frac{b_-}{b_-} > 0.$$

$$\mu = p_{-}(f_{-})_{*}\mu + p_{+}(f_{+})_{*}\mu$$

and $\mu(\{0,1\}) = 0.$

 μ is either singular or absolutely continuous w.r.t. Lebesgue measure.

Task: determine which possibility occurs.

$$\Lambda(0) := p_+ \log \frac{b_+}{b_+} + p_- \log a_- > 0,$$

 $\Lambda(1) := p_+ \log a_+ + p_- \log \frac{b_-}{b_-} > 0.$

$$\mu = p_{-}(f_{-})_{*}\mu + p_{+}(f_{+})_{*}\mu$$

and $\mu(\{0,1\}) = 0.$

 μ is either singular or absolutely continuous w.r.t. Lebesgue measure.

Task: determine which possibility occurs. If μ is singular, determine $\dim_{H}(\mu)$.

$$\Lambda(0) := p_+ \log \frac{b_+}{b_+} + p_- \log a_- > 0, \ \Lambda(1) := p_+ \log a_+ + p_- \log \frac{b_-}{b_-} > 0.$$

$$\mu = p_{-}(f_{-})_{*}\mu + p_{+}(f_{+})_{*}\mu$$

and $\mu(\{0,1\}) = 0.$

 μ is either singular or absolutely continuous w.r.t. Lebesgue measure.

Task: determine which possibility occurs. If μ is singular, determine $\dim_{H}(\mu)$.

Alsedà and Misiurewicz conjectured that typically measure μ should be singular.

$$\Lambda(0) := p_+ \log \frac{b_+}{b_+} + p_- \log a_- > 0, \ \Lambda(1) := p_+ \log a_+ + p_- \log \frac{b_-}{b_-} > 0.$$

$$\mu = p_{-}(f_{-})_{*}\mu + p_{+}(f_{+})_{*}\mu$$

and $\mu(\{0,1\}) = 0.$

 μ is either singular or absolutely continuous w.r.t. Lebesgue measure.

Task: determine which possibility occurs. If μ is singular, determine $\dim_{H}(\mu)$.

Alsedà and Misiurewicz conjectured that typically measure μ should be singular.

Results: Singularity and dimension calculation/bounds for certain sets of parameters.

Groups of circle diffeomorphisms

Navas, Question 18¹: Singularity vs absolute continuity for finitely-generated groups G of C^2 orientation-preserving circle diffeomorphisms.

 $^1 {\it Group}$ actions on 1-manifolds: a list of very concrete open questions - ICM 2018

Groups of circle diffeomorphisms

Navas, Question 18¹: Singularity vs absolute continuity for finitely-generated groups G of C^2 orientation-preserving circle diffeomorphisms.

Results in the direction of singularity for some specific groups: Furstenberg; Guivarc'h and Le Jan (conjecture of Guivarc'h, Kaimanovich and Ledrappier); Deroin, Kleptsyn and Navas.

¹Group actions on 1-manifolds: a list of very concrete open questions - ICM 2018

Groups of circle diffeomorphisms

Navas, Question 18¹: Singularity vs absolute continuity for finitely-generated groups G of C^2 orientation-preserving circle diffeomorphisms.

Results in the direction of singularity for some specific groups: Furstenberg; Guivarc'h and Le Jan (conjecture of Guivarc'h, Kaimanovich and Ledrappier); Deroin, Kleptsyn and Navas.

Navas, Question 16: Assume that G admits an exceptional minimal set Λ . Is the restriction of the action G to Λ topologically conjugated to the action of a group of piecewise-affine homeomorphisms? (conjecture of Dippolito)

¹Group actions on 1-manifolds: a list of very concrete open questions - ICM 2018

We say that an AM-system $\{f_-, f_+\}$ is of:

- disjoint type, if the intervals $[0, f_-(x_-)]$, $[f_+(x_+), 1]$ are disjoint, i.e. $f_-(x_-) < f_+(x_+)$,
- **border type**, if the intervals $[0, f_-(x_-)]$, $[f_+(x_+), 1]$ touch each other, i.e. $f_-(x_-) = f_+(x_+)$,
- overlapping type, if the intervals $[0, f_{-}(x_{-})]$, $[f_{+}(x_{+}), 1]$ overlap, i.e. $f_{-}(x_{-}) > f_{+}(x_{+})$.

Figure: Three types of AM-systems: disjoint, border and overlapping.

Let $\mathcal{I}: [0,1] \rightarrow [0,1], \ \mathcal{I}(x) = 1 - x.$

Let $I : [0,1] \to [0,1], I(x) = 1 - x.$

We say that $\{f_-, f_+\}$ is symmetric if $f_+ \circ \mathcal{I} = \mathcal{I} \circ f_-$.

Let $\mathcal{I} : [0,1] \rightarrow [0,1], \ \mathcal{I}(x) = 1 - x.$

We say that $\{f_-, f_+\}$ is symmetric if $f_+ \circ \mathcal{I} = \mathcal{I} \circ f_-$.

Theorem 1

Let $\{f_-, f_+\}$ be an AM-system with probabilities p_-, p_+ , such that the Lyapunov exponents $\Lambda(0), \Lambda(1)$ are positive. Then the stationary measure μ is the Lebesgue measure on [0, 1] if and only if the system is of border type and

$$\frac{p_-}{a_-} + \frac{p_+}{b_+} = 1$$

In this case we also have $\frac{p_-}{b_-} + \frac{p_+}{a_+} = 1$.

Let $\mathcal{I} : [0,1] \rightarrow [0,1], \ \mathcal{I}(x) = 1 - x.$

We say that $\{f_-, f_+\}$ is symmetric if $f_+ \circ \mathcal{I} = \mathcal{I} \circ f_-$.

Theorem 1

Let $\{f_-, f_+\}$ be an AM-system with probabilities p_-, p_+ , such that the Lyapunov exponents $\Lambda(0), \Lambda(1)$ are positive. Then the stationary measure μ is the Lebesgue measure on [0, 1] if and only if the system is of border type and

$$\frac{p_-}{a_-} + \frac{p_+}{b_+} = 1$$

In this case we also have $\frac{p_-}{b_-} + \frac{p_+}{a_+} = 1$.

For symmetric systems with $p_- = p_+ = \frac{1}{2}$ this gives $\mu = \text{Leb}|_{[0,1]}$ if and only if $f_+(x_+) = f_-(x_-) = \frac{1}{2}$.

We say that that an AM-system $\{f_-,f_+\}$ exhibits a resonance at the point 0, if

$$\frac{\ln f'_+(0)}{\ln f'_-(0)} \in \mathbb{Q}.$$

We say that that an AM-system $\{f_-,f_+\}$ exhibits a resonance at the point 0, if

 $\frac{\ln f'_+(0)}{\ln f'_-(0)} \in \mathbb{Q}.$

More precisely, a (k: l)-resonance at 0 occurs for $k, l \in \mathbb{N}$ if

$$\frac{\ln f'_+(0)}{\ln f'_-(0)} = -\frac{k}{l},$$

We say that that an AM-system $\{f_-, f_+\}$ exhibits a **resonance** at the point 0, if

 $\frac{\ln f'_+(0)}{\ln f'_-(0)} \in \mathbb{Q}.$

More precisely, a (k : I)-resonance at 0 occurs for $k, I \in \mathbb{N}$ if

$$\frac{\ln f'_+(0)}{\ln f'_-(0)} = -\frac{k}{l},$$

which is equivalent to

 $a_{-}=f_{-}'(0)=
ho^{\prime},\,\,b_{+}=f_{+}'(0)=
ho^{-k}$ for some $ho\in(0,1).$

We say that that an AM-system $\{f_-,f_+\}$ exhibits a resonance at the point 0, if

 $\frac{\ln f'_+(0)}{\ln f'_-(0)} \in \mathbb{Q}.$

More precisely, a (k: l)-resonance at 0 occurs for $k, l \in \mathbb{N}$ if

$$\frac{\ln f'_+(0)}{\ln f'_-(0)} = -\frac{k}{l},$$

which is equivalent to

$$a_- = f_-'(0) =
ho', \,\, b_+ = f_+'(0) =
ho^{-k}$$
 for some $ho \in (0,1).$

Analogously, a (k : l)-resonance at 1 occurs if $\frac{\ln f'_{-}(1)}{\ln f'_{+}(1)} = -\frac{k}{l}$.

We say that that an AM-system $\{f_-,f_+\}$ exhibits a resonance at the point 0, if

 $\frac{\ln f'_+(0)}{\ln f'_-(0)} \in \mathbb{Q}.$

More precisely, a (k : l)-resonance at 0 occurs for $k, l \in \mathbb{N}$ if

$$\frac{\ln f'_+(0)}{\ln f'_-(0)} = -\frac{k}{l},$$

which is equivalent to

$$a_- = f_-'(0) =
ho^l, \; b_+ = f_+'(0) =
ho^{-k}$$
 for some $ho \in (0,1).$

Analogously, a (k : I)-resonance at 1 occurs if $\frac{\ln f'_{-}(1)}{\ln f'_{+}(1)} = -\frac{k}{I}$. Without loss of generality, we always assume that k, I are relatively prime.

If an AM-system with positive Lyapunov exponents has no resonance at one of the endpoints 0, 1, then it is minimal in (0, 1) and the support of μ is equal to [0, 1].

If an AM-system with positive Lyapunov exponents has no resonance at one of the endpoints 0, 1, then it is minimal in (0, 1) and the support of μ is equal to [0, 1].

Theorem 2

Let $\{f_-, f_+\}$ be a symmetric AM-system with positive Lyapunov exponents.

If an AM-system with positive Lyapunov exponents has no resonance at one of the endpoints 0, 1, then it is minimal in (0, 1) and the support of μ is equal to [0, 1].

Theorem 2

Let $\{f_-, f_+\}$ be a symmetric AM-system with positive Lyapunov exponents. If the system exhibits (k : I)-resonance for some $k, I \in \mathbb{N}$, k > I

If an AM-system with positive Lyapunov exponents has no resonance at one of the endpoints 0, 1, then it is minimal in (0, 1) and the support of μ is equal to [0, 1].

Theorem 2

Let $\{f_-, f_+\}$ be a symmetric AM-system with positive Lyapunov exponents. If the system exhibits (k : I)-resonance for some $k, I \in \mathbb{N}$, k > I and satisfies $\rho < \eta$ where $\eta \in (1/2, 1)$ is the unique solution of the equation

$$\eta^{k+l} - 2\eta^{k+1} + 2\eta - 1 = 0,$$

If an AM-system with positive Lyapunov exponents has no resonance at one of the endpoints 0, 1, then it is minimal in (0, 1) and the support of μ is equal to [0, 1].

Theorem 2

Let $\{f_-, f_+\}$ be a symmetric AM-system with positive Lyapunov exponents. If the system exhibits (k : I)-resonance for some $k, I \in \mathbb{N}$, k > I and satisfies $\rho < \eta$ where $\eta \in (1/2, 1)$ is the unique solution of the equation

$$\eta^{k+l} - 2\eta^{k+1} + 2\eta - 1 = 0,$$

then the stationary measure μ is singular

If an AM-system with positive Lyapunov exponents has no resonance at one of the endpoints 0, 1, then it is minimal in (0, 1) and the support of μ is equal to [0, 1].

Theorem 2

Let $\{f_-, f_+\}$ be a symmetric AM-system with positive Lyapunov exponents. If the system exhibits (k : I)-resonance for some $k, I \in \mathbb{N}$, k > I and satisfies $\rho < \eta$ where $\eta \in (1/2, 1)$ is the unique solution of the equation

$$\eta^{k+l} - 2\eta^{k+1} + 2\eta - 1 = 0,$$

then the stationary measure μ is singular with

$$\dim_{H}(\operatorname{supp} \mu) = \frac{\log \eta}{\log \rho} < 1.$$

If an AM-system with positive Lyapunov exponents has no resonance at one of the endpoints 0, 1, then it is minimal in (0, 1) and the support of μ is equal to [0, 1].

Theorem 2

Let $\{f_-, f_+\}$ be a symmetric AM-system with positive Lyapunov exponents. If the system exhibits (k : l)-resonance for some $k, l \in \mathbb{N}$, k > l and satisfies $\rho < \eta$ where $\eta \in (1/2, 1)$ is the unique solution of the equation

$$\eta^{k+l} - 2\eta^{k+1} + 2\eta - 1 = 0,$$

then the stationary measure μ is singular with

$$\dim_H(\operatorname{supp} \mu) = \frac{\log \eta}{\log \rho} < 1.$$

The condition $\rho < \eta$ implies that the system is of disjoint type.

If an AM-system with positive Lyapunov exponents has no resonance at one of the endpoints 0, 1, then it is minimal in (0, 1) and the support of μ is equal to [0, 1].

Theorem 2

Let $\{f_-, f_+\}$ be a symmetric AM-system with positive Lyapunov exponents. If the system exhibits (k : l)-resonance for some $k, l \in \mathbb{N}$, k > l and satisfies $\rho < \eta$ where $\eta \in (1/2, 1)$ is the unique solution of the equation

$$\eta^{k+l} - 2\eta^{k+1} + 2\eta - 1 = 0,$$

then the stationary measure μ is singular with

$$\dim_{H}(\operatorname{supp} \mu) = \frac{\log \eta}{\log \rho} < 1.$$

The condition $\rho < \eta$ implies that the system is of disjoint type. In the case l = 1 it is equivalent to being of disjoint type.

Proof of Theorem 2 - case l = 1

Proof of Theorem 2 - case l = 1

$$I_{-1} = f_{-}([f_{+}(x_{+}), x_{-}]) = [\rho f_{+}(x_{+}), \rho x_{-}]$$

 $I_{-j} = f_{-}^{j-1}(I_{-1}) = \rho^{j-1}I_{-1}$ $I_{-1} = f_{-}([f_{+}(x_{+}), x_{-}]) = [\rho f_{+}(x_{+}), \rho x_{-}]$

.

$$I_{-j} = f_{-}^{j-1}(I_{-1}) = \rho^{j-1}I_{-1}$$

 $I_{-1} = f_{-}([f_{+}(x_{+}), x_{-}]) = [\rho f_{+}(x_{+}), \rho x_{-}]$

$$I_{-j} = f_{-}^{j-1}(I_{-1}) = \rho^{j-1}I_{-1}$$
$$I_{-1} = f_{-}([f_{+}(x_{+}), x_{-}]) = [\rho f_{+}(x_{+}), \rho x_{-}]$$
$$I_{j} = \mathcal{I}(I_{-j})$$

$$I_{-j} = f_{-}^{j-1}(I_{-1}) = \rho^{j-1}I_{-1}$$
$$I_{-1} = f_{-}([f_{+}(x_{+}), x_{-}]) = [\rho f_{+}(x_{+}), \rho x_{-}]$$
$$I_{j} = \mathcal{I}(I_{-j})$$

$$I_{-j} = f_{-}^{j-1}(I_{-1}) = \rho^{j-1}I_{-1}$$
$$I_{-1} = f_{-}([f_{+}(x_{+}), x_{-}]) = [\rho f_{+}(x_{+}), \rho x_{-}]$$
$$I_{j} = \mathcal{I}(I_{-j})$$

$$I_{-j} = f_{-}^{j-1}(I_{-1}) = \rho^{j-1}I_{-1}$$
$$I_{-1} = f_{-}([f_{+}(x_{+}), x_{-}]) = [\rho f_{+}(x_{+}), \rho x_{-}]$$
$$I_{j} = \mathcal{I}(I_{-j})$$

$$I_{-j} = f_{-}^{j-1}(I_{-1}) = \rho^{j-1}I_{-1}$$
$$I_{-1} = f_{-}([f_{+}(x_{+}), x_{-}]) = [\rho f_{+}(x_{+}), \rho x_{-}]$$
$$I_{j} = \mathcal{I}(I_{-j})$$

$$I_{-j} = f_{-}^{j-1}(I_{-1}) = \rho^{j-1}I_{-1}$$
$$I_{-1} = f_{-}([f_{+}(x_{+}), x_{-}]) = [\rho f_{+}(x_{+}), \rho x_{-}]$$
$$I_{j} = \mathcal{I}(I_{-j})$$

$$I_{-j} = f_{-}^{j-1}(I_{-1}) = \rho^{j-1}I_{-1}$$
$$I_{-1} = f_{-}([f_{+}(x_{+}), x_{-}]) = [\rho f_{+}(x_{+}), \rho x_{-}]$$
$$I_{j} = \mathcal{I}(I_{-j})$$

$$I_{-j} = f_{-}^{j-1}(I_{-1}) = \rho^{j-1}I_{-1}$$
$$I_{-1} = f_{-}([f_{+}(x_{+}), x_{-}]) = [\rho f_{+}(x_{+}), \rho x_{-}]$$
$$I_{j} = \mathcal{I}(I_{-j})$$

 $\Lambda =$ union of Cantor sets.

 $\Lambda =$ union of Cantor sets. Claim: $\overline{\Lambda} = \Lambda \cup \{0, 1\} = \omega_{\infty}(x)$ for $x \in (0, 1)$

 $\Lambda =$ union of Cantor sets. Claim: $\overline{\Lambda} = \Lambda \cup \{0,1\} = \omega_{\infty}(x)$ for $x \in (0,1)$

 $\omega_{\infty}(x) = \{ \text{limit points of trajectionies of } x \text{ jumping over the interval} \\ (f_{-}(x_{-}), f_{+}(x_{+})) \text{ infinitely many times} \}$

Dimension of $\boldsymbol{\mu}$

Dimension of $\boldsymbol{\mu}$

Theorem 3

Let $\{f_-, f_+\}$ be a symmetric AM-system of disjoint type with probabilities p_-, p_+ , such that the Lyapunov exponents are positive.

Dimension of μ

Theorem 3

Let $\{f_-, f_+\}$ be a symmetric AM-system of disjoint type with probabilities p_-, p_+ , such that the Lyapunov exponents are positive. If the system exhibits (k : 1)-resonance for some $k \in \{2, 3, ...\}$, then

Dimension of μ

Theorem 3

Let $\{f_-, f_+\}$ be a symmetric AM-system of disjoint type with probabilities p_-, p_+ , such that the Lyapunov exponents are positive. If the system exhibits (k : 1)-resonance for some $k \in \{2, 3, ...\}$, then

$$\dim_{H} \mu = \frac{\sum_{r=1}^{k} r\left(\frac{p_{+}}{p_{-}}\eta_{-}^{r}\log\eta_{-} + \frac{p_{-}}{p_{+}}\eta_{+}^{r}\log\eta_{+}\right)}{\sum_{r=1}^{k} r\left(\frac{p_{+}}{p_{-}}\eta_{-}^{r} + \frac{p_{-}}{p_{+}}\eta_{+}^{r}\right)\log\rho},$$

where $\eta_-,\eta_+\in(0,1)$ are, respectively, the unique solutions of the equations

$$p_+\eta_-^{k+1}-\eta_-+p_-=0, \qquad p_-\eta_+^{k+1}-\eta_++p_+=0.$$

Dimension of μ

Theorem 3

Let $\{f_-, f_+\}$ be a symmetric AM-system of disjoint type with probabilities p_-, p_+ , such that the Lyapunov exponents are positive. If the system exhibits (k : 1)-resonance for some $k \in \{2, 3, ...\}$, then

$$\dim_{H} \mu = \frac{\sum_{r=1}^{k} r\left(\frac{p_{+}}{p_{-}}\eta_{-}^{r}\log\eta_{-} + \frac{p_{-}}{p_{+}}\eta_{+}^{r}\log\eta_{+}\right)}{\sum_{r=1}^{k} r\left(\frac{p_{+}}{p_{-}}\eta_{-}^{r} + \frac{p_{-}}{p_{+}}\eta_{+}^{r}\right)\log\rho},$$

where $\eta_{-}, \eta_{+} \in (0, 1)$ are, respectively, the unique solutions of the equations

$$p_+\eta_-^{k+1}-\eta_-+p_-=0, \qquad p_-\eta_+^{k+1}-\eta_++p_+=0.$$

In particular, if $p_- = p_+ = 1/2$, then

$$\dim_{H} \mu = \dim_{H}(\operatorname{supp} \mu) = \frac{\log \eta}{\log \rho} < 1.$$

Case l > 1

Case l > 1

For l > 1, supp (μ) is a disjoint union of pairwise similar Cantor sets, which are generated by an *infinite* self-similar IFS on \mathbb{R} .

Case l > 1

For l > 1, supp (μ) is a disjoint union of pairwise similar Cantor sets, which are generated by an *infinite* self-similar IFS on \mathbb{R} .

These copies are located in [0,1] in a more complicated manner, accumulating on another Cantor set.

Case l > 1

For l > 1, supp (μ) is a disjoint union of pairwise similar Cantor sets, which are generated by an *infinite* self-similar IFS on \mathbb{R} .

These copies are located in [0,1] in a more complicated manner, accumulating on another Cantor set.

For $p_{-} = p_{+} = \frac{1}{2}$, measure μ on each of these Cantor sets is (up to normalization) a self-similar measure.

Theorem 4

If a symmetric AM-system with probabilities $p_- = p_+ = 1/2$ and positive Lyapunov exponents exhibits (5 : 2)-resonance and satisfies $\rho = \eta$, then μ is singular with

 $\dim_{H}\mu<1,\qquad \text{supp}\,\mu=[0,1].$

Theorem 4

If a symmetric AM-system with probabilities $p_- = p_+ = 1/2$ and positive Lyapunov exponents exhibits (5 : 2)-resonance and satisfies $\rho = \eta$, then μ is singular with

 $\dim_H \mu < 1, \qquad \text{supp } \mu = [0, 1].$

Theorem 5

Let $\{f_-, f_+\}$, $\{g_-, g_+\}$ be symmetric AM-systems of disjoint type.

Theorem 4

If a symmetric AM-system with probabilities $p_- = p_+ = 1/2$ and positive Lyapunov exponents exhibits (5 : 2)-resonance and satisfies $\rho = \eta$, then μ is singular with

 $\dim_H \mu < 1, \qquad \operatorname{supp} \mu = [0, 1].$

Theorem 5

Let $\{f_-, f_+\}$, $\{g_-, g_+\}$ be symmetric AM-systems of disjoint type. If both systems exhibit (k : l)-resonance for some $k, l \in \mathbb{N}$, k > l, and satisfy $\rho < \eta$

Theorem 4

If a symmetric AM-system with probabilities $p_- = p_+ = 1/2$ and positive Lyapunov exponents exhibits (5 : 2)-resonance and satisfies $\rho = \eta$, then μ is singular with

 $\dim_H \mu < 1, \qquad \operatorname{supp} \mu = [0, 1].$

Theorem 5

Let $\{f_-, f_+\}$, $\{g_-, g_+\}$ be symmetric AM-systems of disjoint type. If both systems exhibit (k : l)-resonance for some $k, l \in \mathbb{N}$, k > l, and satisfy $\rho < \eta$, then they are topologically conjugated

Theorem 4

If a symmetric AM-system with probabilities $p_- = p_+ = 1/2$ and positive Lyapunov exponents exhibits (5 : 2)-resonance and satisfies $\rho = \eta$, then μ is singular with

 $\dim_H \mu < 1, \qquad \operatorname{supp} \mu = [0, 1].$

Theorem 5

Let $\{f_-, f_+\}$, $\{g_-, g_+\}$ be symmetric AM-systems of disjoint type. If both systems exhibit (k : l)-resonance for some $k, l \in \mathbb{N}, k > l$, and satisfy $\rho < \eta$, then they are topologically conjugated, i.e. there exists an increasing homeomorphism $h: [0, 1] \rightarrow [0, 1]$ such that

$$g_- \circ h = h \circ f_-, \qquad g_+ \circ h = h \circ f_+.$$

$$f_{-}(x) = \begin{cases} \rho x & , x \in [0, x_{-}] \\ \rho^{-\gamma} x + 1 - \rho^{-\gamma} & , x \in (x_{-}, 1] \end{cases},$$
$$f_{+}(x) = \begin{cases} \rho^{-\gamma} x & \text{for } x \in [0, x_{+}] \\ \rho x + 1 - \rho & \text{for } x \in (x_{+}, 1] \end{cases},$$

where $ho\in(0,1),\ \gamma>1$ and

$$x_{+} = \frac{1-\rho}{\rho^{-\gamma}-\rho},$$
$$x_{-} = \frac{\rho^{-\gamma}-1}{\rho^{-\gamma}-\rho}.$$

$$f_{-}(x) = \begin{cases} \rho x & , x \in [0, x_{-}] \\ \rho^{-\gamma} x + 1 - \rho^{-\gamma} & , x \in (x_{-}, 1] \end{cases},$$
$$f_{+}(x) = \begin{cases} \rho^{-\gamma} x & \text{for } x \in [0, x_{+}] \\ \rho x + 1 - \rho & \text{for } x \in (x_{+}, 1] \end{cases},$$

where $ho\in(0,1),\ \gamma>1$ and

$$egin{aligned} x_+ &= rac{1-
ho}{
ho^{-\gamma}-
ho}, \ x_- &= rac{
ho^{-\gamma}-1}{
ho^{-\gamma}-
ho}. \end{aligned}$$

Note:
$$\gamma = -\frac{\ln f'_+(0)}{\ln f'_-(0)}$$
.

$$f_{-}(x) = \begin{cases} \rho x & , x \in [0, x_{-}] \\ \rho^{-\gamma} x + 1 - \rho^{-\gamma} & , x \in (x_{-}, 1] \end{cases},$$
$$f_{+}(x) = \begin{cases} \rho^{-\gamma} x & \text{for } x \in [0, x_{+}] \\ \rho x + 1 - \rho & \text{for } x \in (x_{+}, 1] \end{cases},$$

where $ho \in (0,1), \ \gamma > 1$ and

$$egin{aligned} x_+ &= rac{1-
ho}{
ho^{-\gamma}-
ho}, \ x_- &= rac{
ho^{-\gamma}-1}{
ho^{-\gamma}-
ho}. \end{aligned}$$

Note: $\gamma = -\frac{\ln f'_{+}(0)}{\ln f'_{-}(0)}$. Assume $p_{-} = p_{+} = \frac{1}{2}$. Then $\Lambda(0) = \Lambda(1) > 0$.

Note: $\gamma = -\frac{\ln f'_{+}(0)}{\ln f'_{-}(0)}$. Assume $p_{-} = p_{+} = \frac{1}{2}$. Then $\Lambda(0) = \Lambda(1) > 0$.

Let $\mu_{\rho,\gamma}$ be the corresponding stationary measure.

Theorem 6 (work in progress)

Fix $\gamma \in (1, \frac{3}{2})$. For ρ sufficiently small, the corresponding measure $\mu_{\rho,\gamma}$ is singular with dim_H($\mu_{\rho,\gamma}$) < 1.

Theorem 6 (work in progress)

Fix $\gamma \in (1, \frac{3}{2})$. For ρ sufficiently small, the corresponding measure $\mu_{\rho,\gamma}$ is singular with dim_H($\mu_{\rho,\gamma}$) < 1.Consequently, there exists an open set of parameters such that dim_H(μ) < 1
Theorem 6 (work in progress)

Fix $\gamma \in (1, \frac{3}{2})$. For ρ sufficiently small, the corresponding measure $\mu_{\rho,\gamma}$ is singular with dim_H($\mu_{\rho,\gamma}$) < 1.Consequently, there exists an open set of parameters such that dim_H(μ) < 1

The above theorem includes cases $\frac{\ln f'_+(0)}{\ln f'_-(0)}\notin \mathbb{Q}.$

Theorem 6 (work in progress)

Fix $\gamma \in (1, \frac{3}{2})$. For ρ sufficiently small, the corresponding measure $\mu_{\rho,\gamma}$ is singular with dim_H($\mu_{\rho,\gamma}$) < 1.Consequently, there exists an open set of parameters such that dim_H(μ) < 1

The above theorem includes cases $\frac{\ln f'_+(0)}{\ln f'_-(0)} \notin \mathbb{Q}$.

For a probability vector (p_-, p_+) , let

$$H((p_-, p_+)) := -p_- \log p_- - p_+ \log p_+,$$
$$\chi(\mu) := \int_{[0,1]} (p_- \log f'_-(x) + p_+ \log f'_+(x)) d\mu(x)$$

Theorem 6 (work in progress)

Fix $\gamma \in (1, \frac{3}{2})$. For ρ sufficiently small, the corresponding measure $\mu_{\rho,\gamma}$ is singular with dim_H($\mu_{\rho,\gamma}$) < 1.Consequently, there exists an open set of parameters such that dim_H(μ) < 1

The above theorem includes cases $\frac{\ln f'_+(0)}{\ln f'_-(0)} \notin \mathbb{Q}$.

For a probability vector (p_-, p_+) , let

$$H((p_-, p_+)) := -p_- \log p_- - p_+ \log p_+,$$

 $\chi(\mu) := \int_{[0,1]} (p_- \log f'_-(x) + p_+ \log f'_+(x)) d\mu(x).$

We use the following general upper bound:

$$\mathsf{dim}_H(\mu_{
ho,\gamma}) \leq -rac{H((m{p}_-,m{p}_+))}{\chi(\mu_{
ho,\gamma})},$$

provided $\chi(\mu_{\rho,\gamma}) < 0$.

In our case $\chi(\mu_{ ho,\gamma}) = (rac{1-\gamma}{2} + \mu_{ ho,\gamma}(M)rac{1+\gamma}{2})\log ho,$

where $M = [x_+, x_-]$.

In our case $\chi(\mu_{\rho,\gamma})=(\frac{1-\gamma}{2}+\mu_{\rho,\gamma}(M)\frac{1+\gamma}{2})\log\rho,$ where $M=[x_+,x_-].$

Idea: use Kac's Lemma and bound the expected return time to M.

In our case $\chi(\mu_{\rho,\gamma}) = (\frac{1-\gamma}{2} + \mu_{\rho,\gamma}(M)\frac{1+\gamma}{2})\log\rho,$ where $M = [x_+, x_-].$

Idea: use Kac's Lemma and bound the expected return time to M. This can be done, as outside of M the system behaves as a random walk.

Thank you for your attention!