Chaos 000000 Conclusions

Period incrementing and chaos in a hybrid neuron model

Justyna Signerska-Rynkowska

Kraków, June 12, 2019

joint work with Jonathan Rubin (Univ. of Pittsburgh) Jonathan Touboul (Brandeis Univ.) Alexandre Vidal (Univ. d'Évry-Val-d'Essonne)

・ロト ・ 直 ト ・ 画 ト ・ 画 - うくぐ

Rosa (Rose, pl. Róża)

The main excitability properties of neurons can be linked with bifurcations of dynamical systems for

- Continuous dynamical systems: detailed neuron models and their reductions (Rinzel, Ermentrout, Guckenheimer, ...).
- Discrete dynamical systems: map-based models (Caselles, Rulkov, ...)

Hybrid dynamical systems

Integrate-and-fire neuron models combine:

- A continuous dynamical system (ordinary differential equations) accounting for input integration
- A discrete dynamical system (map iteration) accounting for spike emission.

• ε , b, $l \in \mathbb{R}$; v_R , d > 0 - parameters of the vector field and the reset

Assumption (A1)

The map $F : \mathbb{R} \to \mathbb{R}$ has the following properties:

- it is regular (at least three times continuously differentiable);
- it is strictly convex;
- its derivative diverges at +∞, i.e. lim_{v→∞} F'(v) = ∞, and has a negative limit at -∞ (possibly also negative infinite) satisfying:

$$\lim_{v\to-\infty}F'(v)<-\varepsilon(b+\sqrt{2});$$

• there exist $\eta, \alpha, \hat{v} > 0$ such that $F(v)/v^{2+\eta} \ge \alpha$ for all $v \ge \hat{v}$.

E.g.
$$F(v) = v^4 + 2av$$
, $F(v) = e^v - v$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

• Bifurcation analysis [Touboul, Brette, 2009]

• Other works on the model [Brunel, Latham, 2003; Brette, Gerstner, 2005; Foxall *et.al.*, 2012; Jimenez *et.al.*, 2003; Jolivet *et.al.*, 2008; Naud *et.al.*, 2008; ...]

イロト 不得 トイヨト イヨト ニヨー

In regions **B** and **C** the system can support stable **MM(B)Os** (**mixed-mode (bursting) oscillations**), whose signatures can be linked with rotation numbers of discontinuous interval maps:

- non-overlapping maps ([Keener 1980; Rhodes, Thompson 1986, 1991])
- overlapping maps (old heavy maps by [Misiurewicz 1986])

More: [J.R., J.S.-R., J.T., A.V. *Wild oscillations in a nonlinear neuron model with resets: (II) Mixed-mode oscillations.* DCDS-B 22 (2017), no. 10, 4003–4039.]

In some parameters regimes the induced adaptation map is a **Lorenz-like map**.

The work [Geller, Misiurewicz, *Farey-Lorenz permutations for interval maps.* Internat. J. Bifur. Chaos Appl. Sci. Engrg. 28 (2018), no. 2, 1850021] provides an effective algorithm allowing to decode *many* MMO signatures in this case.

• In Yellow region, with the increase of v_R , the system passes from regular tonic spiking to **bursting with spike-adding structure** (and **chaos** at the transitions)

[J.R., J.S.-R., J.T., A.V. Wild oscillations in a nonlinear neuron model with resets: (1) Bursting, spike adding and chaos, DCDS-B 22 (2017), 3967–4002]

The spike train of the spiking solution $(V(t; v_R, w), W(t; v_R, w))$ with initial condition (v_R, w) can be qualitatively described via the dynamics of the *adaptation map* Φ , with fixed points of Φ corresponding to tonic, regular spiking and periodic orbits to bursts.

Definition [Adaptation map]

The adaptation map Φ associates to the value of the adaptation variable *w* the value of the adaptation variable after reset, i.e.

$$\Phi(w) := W(t_*; v_R, w) + d$$

Flower	2D IF models	Spike-adding	Chaos	Conclusions
O	○○○○○●○○○○	000000000	000000	
Adaptation	map			

We define:

- \mathcal{D} the set of w s.t. the solution starting from (v_R, w) spikes.
- Φ : D → ℝ the function such that Φ(w) is the after-spike adaptation value.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

[Touboul, Brette, 2009]

Flower	2D IF models	Spike-adding	Chaos	Conclusions
	00000000000			

(a) Phase plane for $w_0 < w^*$.

(b) Phase plane for $w_0 > w^*$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

[Touboul, Brette, 2009]

[Touboul, Brette, 2009]

Flower	2D IF models	Spike-adding	Chaos	Conclusions
	000000000			

• $w^* = F(v_R) + I$ and $w^{**} = bv_R$ - intersections of the reset line $\{v = v_R\}$ with v- and w-nullclines, respectively

Theorem ([Touboul, Brette, 2009])

The adaptation map has the following properties

- $\Phi(w)$ is defined for all $w \in \mathbb{R}$
- Φ is increasing and concave on (-∞, w*) (with Φ"(w) < 0 for w < w*)
- Φ is decreasing and bounded below on [w^{*},∞) and thus has an horizontal asymptote (plateau) at infinity
- Φ is at least C^3 (more generally, C^k if F is as well)
- Φ has a unique fixed point in $\mathbb R$

• For all
$$w < w^{**}$$
, we have $\Phi(w) \ge w + d \ge w$

Φ can be seen as a unimodal interval map

the quartic model with $F(v) = v^4 + 2av$, a = 0.2, b = 0.7, I = 2, d = 1, $\varepsilon = 0.4$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

lowe	2D IF models	Spike-adding ○●○○○○○○○	Chaos 000000	Conclusions 000
	Assumption (A3)			
	The reset line is placed to the	right of the fold ((<i>v_F, w_F</i>), i.e.	
		$v_R > v_F$		

Idea: Consider firstly the dynamics in the limit of perfect time-scale separation ($\varepsilon \rightarrow 0$) and show that desired properties persist for $\varepsilon > 0$ small / approximate by piece-wise linear map Φ_0

Similar ideas:

- Belousov-Zhabotinsky reaction [Rinzel, Troy 1983]
- neon tubes [Levi 1990]
- map-based neuron models [Avrutin, Granados, Schanz 2011; Jia *et. al.* 2012; Juan *et. al.* 2010; Manica, Medvedev, Rubin 2010; Rulkov *et. al.* 2004]

• (v_F, w_F) - the fold $((v_F, w_F - I)$ is the unique minimum of F)

• C - critical manifold $\{(v, F(v) + I)\}$, split into two parts C^- and C^+

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $\mathcal{C}_{\varepsilon}^{-}$ and $\mathcal{C}_{\varepsilon}^{+}$ attractive and repulsive slow manifolds (for ε small)
- $p_{\varepsilon} := \lim_{w \to \infty} \Phi_{\varepsilon}(w)$ the plateau of Φ_{ε}
- $\xi := \sup\{w \in [w^*, \Phi(w^*)] : \Phi_{\varepsilon}'(w) < -1\}$

2011	models	Spike-adding	Chaos	Conclusions
0 0000		00000000		

In the limit $\varepsilon \to 0 \ \Phi_{\varepsilon}$ can be approximated by

$$\Phi_0: w \mapsto \begin{cases} w+d & w \leq w^* \\ p_0:=w_F+d & w > w^* \end{cases}$$

Let $d_{\mathrm{H}}(G(\Phi_{\varepsilon}), G(\Phi_{0}))$ denote the Hausdorff distance between the graphs of Φ_{ε} and Φ_{0} .

Proposition

For any fixed $v_R > v_F$, we have $d_H(G(\Phi_{\varepsilon}), G(\Phi_0)) \to 0$ as $\varepsilon \to 0$. Moreover, given $\nu > 0$, with $\varepsilon \to 0$

•
$$d_{C^0}(\Phi_{\varepsilon}, \Phi_0) \rightarrow 0$$
 on $(-\infty, w^*] \cup [w^* + \nu, +\infty)$

•
$$d_{C^1}(\Phi_{\varepsilon}, \Phi_0) \rightarrow 0$$
 on $(-\infty, w^* - \nu] \cup [w^* + \nu, +\infty)$

Flower	2D IF models	Spike-adding	Chaos	Conclusions
		000000000		

Proposition

For any v_R , the map Φ_0 has a unique periodic orbit, which is globally attractive and has period p given by:

$$p := \min\{k \in \mathbb{N}: p_0 + (k-1)d > w^*\}.$$

With the increase of v_R and hence w^* , the period of this orbit is incremented by 1 at each point $w^* = p_0 + (k-1)d$, $k \in \mathbb{N}$. The map thus displays a period-incrementing structure with instantaneous transitions.

Flower	2D IF models	Spike-adding	Chaos	Conclusions
		000000000		

Flower 0	2D IF models 0000000000	Spike-adding ○○○○○●○○○	Chaos 000000	Conclusions 000
	Proposition			
	Assume that $\Phi^2(w^*) < w^*$ point of Φ and $\xi := \sup\{w \Phi^3(w^*) < w^*$, then let $k \in$	$< w^f < \xi < \Phi(w^*), \ \in [w^*, \Phi(w^*)]: \ \Phi'(\mathbb{N} \ be \ defined \ as$	where w^f is the $w) < -1$. If, m	fixed oreover,

$$k := \min\{i \ge 3 : \Phi^{i+1}(w^*) > w^*\}.$$

If there exists $\tilde{w} \geq \xi$ such that

$$\Phi^{i}(w^{*}) < \Phi^{i-1}(\tilde{w}) < w^{*}, \ i \in \{2, 3, ..., k\}, \ and \ \Phi^{k+1}(w^{*}) > \tilde{w},$$

then Φ admits an asymptotically stable *k*-periodic orbit, with itinerary $\mathcal{L}^{k-1}\mathcal{R}^1$, attracting the orbit of w^* .

Moreover, there is no other periodic orbit fully contained in the set $(-\infty, w^*] \cup (\tilde{w}, \infty)$ and all points $w \in [\Phi^2(w^*), \Phi(w^*)] \setminus H$ are attracted by this k-periodic orbit, where

 $H:=A_1\cup A_2\cup \ldots \cup A_{k-1},$

with $A_1 := (\gamma, \tilde{w}), \ \gamma := \Phi^{-1}(\tilde{w}) \cap (w^*, \Phi^*(w))$ and $A_i := \Phi^{-1}(A_{i-1}) \cap (\Phi^2(w^*), w^*), \ i = 2, ..., k - 1.$

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

Theorem (Period incrementing)

For any integer N > 3, there exist $\tilde{\varepsilon} > 0$ and a sequence $\{J_k\}_{k=3}^N$ of intervals J_k of reset values v_R such that for any $\varepsilon \leq \tilde{\varepsilon}$ and $v_R \in J_k$, k = 3, ..., N, the adaptation map Φ_{ε} has an asymptotically stable k-periodic orbit with itinerary $\mathcal{L}^{k-1}\mathcal{R}$. Furthermore, for any $\zeta > 0$, we can pick $\tilde{\varepsilon}$ small enough so that for every $\varepsilon \leq \tilde{\varepsilon}$ and any $v_R \in J_k$ with $k \in \{3, \dots, N\}$, the set H_{ε} of initial conditions w that might not be attracted by the k-periodic orbit of Φ_{ε} has Lebesgue measure smaller than ζ .

Corollary

If for given $\varepsilon < \tilde{\varepsilon}$, we have $S\Phi_{\varepsilon} < 0$, where $S\Phi$ denotes the Schwarzian derivative of Φ , i.e.

$$(\mathrm{S}\Phi)(w):=\frac{\Phi'''(w)}{\Phi'(w)}-\frac{3}{2}\left(\frac{\Phi''(w)}{\Phi'(w)}\right)^2<0\quad for\ w\neq w^*,$$

then the above k-periodic orbit is the unique attracting periodic orbit of Φ .

Flower	2D IF models	Spike-adding	Chaos	Conclusions
O		000000000	●○○○○○	000

Any given condition of the form

$$\Phi^2(w^*) < \Phi^3(w^*) < ... < \Phi^k(w^*) < w^* < \Phi(w^*)$$

is guaranteed to hold for v_R sufficiently large and ε sufficiently small.

Theorem

For every v_R the point w^* is the unique critical point of Φ (i.e. $\Phi'(w) \neq 0$ for $w \neq w^*$). Moreover, if $F'(v_R) > \varepsilon$, then the critical point w^* is non-degenerate:

$$\Phi''(w^*) \neq 0$$

Suppose that $\Phi^2(w^*) < \Phi^3(w^*) < w^* < \Phi(w^*)$. Then

- $\textbf{0} \ \ the \ map \ \Phi \ \ has \ periodic \ orbits \ of \ all \ periods$
- **2** Φ^m has a 'horseshoe' for some $m \in \mathbb{N}$, i.e. there exist two closed-subintervals A_1 and A_2 , with disjoint interiors, such that

 $(A_1\cup A_2)\subseteq (\Phi^m(A_1)\cap \Phi^m(A_2))$

- **(a)** Φ has positive topological entropy
- Φ is chaotic in the sense of Li-Yorke, Block and Coppel and Devaney (with some D-chaotic set Y ⊂ [Φ²(w*), Φ(w*)]).

[Li, Misiurewicz, Pianigiani and Yorke, *No division implies chaos*, Trans. Amer. Math. Soc. 273 (1982); Aulbach, Kieninger 2001; Block, Coppel 1991; Collet, Eckmann 2006; Misiurewicz 2011; ...]

 \blacktriangleright Topological chaos occurs for most of the parameter values v_R and arepsilon

Definition [Metric chaos]

We say that Φ is chaotic if it admits absolutely continuous invariant probability measure (*acip*) μ , i.e. the invariant measure which is finite, normalised and has density with respect to the Lebesgue measure Λ , and when it has positive Lyapunov exponent almost everywhere.

Proposition

Let \mathcal{V} be some bounded interval of parameter values $v_R > v_F$. For sufficiently small ε the corresponding family $\{\Phi_{v_R}\}$ of adaptation maps undergoes period incrementing transitions such that between any two intervals $J_k = [a_k, b_k]$ and $J_{k+1} = [a_{k+1}, b_{k+1}]$ of v_R values, corresponding, respectively, to k and k + 1 periodic orbits, there exists a parameter value $\bar{v}_R \in (b_k, a_{k+1})$ such that

$$(\Phi_{\bar{v}_R})^{k+1}(w^*_{\bar{v}_R}) = w^f_{\bar{v}_R},$$

i.e. the critical point is mapped into a few steps onto a fixed point.

Flower	2D IF models	Spike-adding 000000000	Chaos ○○○○●○	Conclusions
	Carallant (- tractication			
	Corollary (E.g. [de Melo, van Strien 19	993; Thieullen, Tresser, Young f	1994, Thunberg 2001;])	
	Suppose further that the fixe $\Phi_{\bar{\nu}_R}$ does not have periodi	ed point w _{vr} is unst c attractors. Then	able and that the there exist consta	map ants
	$\gamma > 0$ and $C > 0$ and a positive $\gamma > 0$ and $\gamma > 0$	tive measure set E	$\subset \mathcal{V}$ with $\bar{v}_R \in E$	as a
	Lehesque density noint such	n that the I vanuno	v exnonent is no	sitive

along the orbit of the critical point.

$$|(\Phi_{v_R}^n)'(\Phi_{v_R}(w^*))| \geq C \mathrm{e}^{\gamma n} \quad \text{for all } v_R \in E \ \text{and all } n \geq 1.$$

Moreover, if $S\Phi_{v_R} < 0$ for all $v_R \in E$, then the maps Φ_{v_R} , $v_R \in E$, exhibit metric chaos with an acip μ_{v_R} , describing asymptotics for almost all orbits and with positive Lyapunov exponent almost everywhere, *i.e.*

$$\lim_{n\to\infty}\frac{1}{n}\log|(\Phi_{v_R}^n)'(w)|=\kappa>0\quad for \ a.a.\ w\in\mathbb{R}$$

After e.g. [van Strien 1990] it follows that even if we cannot assure that $\Phi_{\bar{\nu}_R}$ does not have periodic attractors, then, at least, the periods of periodic attractors and non-hyperbolic periodic orbits of $\Phi_{\bar{\nu}_R}$ are uniformly bounded.

(A) Adaptation map in the case where $\Phi^5(w^*) = w^f$ (fine-tuning of v_R value) (B) Iterates of Φ in the same setting and the obtained distribution of orbits

Flower	2D IF models	Spike-adding	Chaos	Conclusions
				•00

Conclusions

Versatility of 2D IF models: the system can support bursts of any period as a function of model parameters

Slow-fast approach and establishing a deep relationship of IF dynamics with unimodal maps allow to explain results observed numerically

Some results (e.g. uniqueness and non-degeneracy of the critical point) are independent of the slow-fast analysis

Thank you!

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

References

- B. Aulbach, B. Kieninger, *On three definitions of chaos*. Nonlinear Dyn. Syst. Theory, 1:23–37, 2001.
 - L.S. Block, W.A. Coppel, *Dynamics in One Dimension*, Springer-Verlag, 1992.
- A. M. Blokh, M. Yu. Lyubich, Measurable dynamics of S-unimodal maps of the interval, Ann. Sci. École Norm. Sup. (4), 24:545–5731991.
- W. de Melo, S. van Strien, One-dimensional dynamics: the Schwarzian derivative and beyond., Bull. Amer. Math. Soc. (N.S.), 18:159–162, 1988.
 - M. Levi, A period-adding phenomenon, SIAM J. Applied Matt., 50:943–955, 1990.

- S. Silverman, On maps with dense orbits and the definition of chaos, Rocky Mountain J. Math., 22:353–375, 1992.
- H. Thunberg, *Periodicity versus chaos in one-dimensional dynamics*, SIAM Review, 43:3–30, 2001.
- T.-Y. Li, M. Misiurewicz, G. Pianigiani, G. and J. A. Yorke, *No division implies chaos*, Trans. Amer. Math. Soc., 273:191?199, 1982.
- J. Touboul and R. Brette. *Spiking Dynamics of Bidimensional Integrate-and-Fire Neurons*, SIAM J. Appl. Dyn. Syst., 8:1462-1506, 2009.