Conference on Dynamical Systems Celebrating Michal Misiurewicz's 70th Birthday

Fluctuations of Ergodic Sums on Periodic Orbits under Specification

Samuel Senti (UFRJ - Federal University of Rio de Janeiro)

Kraków, June 10-14, 2019

joint with Manfred Denker (Penn State University) and Xuan Zhang (IME-USP)

Preprint available: http://www.im.ufrj.br/~senti/ or on the arXiv

イロト イポト イヨト イヨト 一日

Happy 70 Michal

Let (X, T, \mathcal{B}, μ) be a probability space:

- $T: X \to X$ a measurable, expansive transformation of a compact metric space X.
- B the Borel σ-algebra.
- μ a *T*-invariant ergodic probability.

For any observable function $\varphi: X \to \mathbb{R}$ denote the Cesàro sum by

$$\frac{1}{n}S_0^n\varphi(x):=\frac{1}{n}\sum_{i=0}^{n-1}\varphi(T^ix)$$

and let

$$\mathbb{E}_{\mu}(arphi) := \int_{X} arphi \, d\mu.$$

Theorem (Birkhoff)

Given a ergodic T-invariant probability μ and an observable function $\varphi: X \to \mathbb{R}$ with $\varphi \in L^1(\mu)$. Then

$$\lim_{n\to\infty}\mu \left\{x\in X: \left|\frac{S_0^n\varphi(x)-n\mathbb{E}_{\mu}(\varphi)}{n}\right|\neq 0\right\}=0.$$

イロト 不得 とくき とくき とうき

How does the Cesàro sum of φ distribute around the expectation?

Definition (Central Limit Theorem)

The measure μ satisfies the Central Limit Theorem with respect to a class of observables \mathcal{H} if there exists $\sigma > 0$ such that, for every $\varphi \in \mathcal{H}$:

$$\lim_{n\to\infty}\mu\left\{x\in X: \frac{S_0^n\varphi(x)-n\mathbb{E}_{\mu}(\varphi)}{\sqrt{n}} \le t\right\} = \frac{1}{\sqrt{2\pi\sigma}}\int_{-\infty}^t e^{-u^2/2\sigma^2}du.$$

Question

How robust is the Central Limit Theorem? Does it still hold for :

- approximations of the measure μ?
- incomplete readings of Cesàro sums (time)?
- approximate readings of Cesàro sums (space)?

New methods of proof of the Central Limit theorem based on a specification property by periodic points (other reference points work as well).

イロン イボン イヨン イヨン

3

To describe incomplete and approximate Cesàro sums introduce dynamical arrays. Uniform case:

Definition (Dynamical Array)

For $l \in \mathbb{N}$ and $a_j \in \mathbb{N}$, $j = 1, ..., k_l$ consider intervals $l_j = [a_j, a_j + n_l]$ of uniform length n_l and uniform gap size $M_l = a_{j+1} - (a_j + n_l)$.

A Dynamical Array is a sequence of real valued functions defined as

$$S_{a_j}^{a_j+n_l}\varphi_l(x) := \sum_{i=a_j}^{a_j+n_l}\varphi_l\left(T^ix\right), \qquad j=1,\ldots,k_l$$

where the $\varphi_l : X \to \mathbb{R}$.

One can also consider the more general (non-uniform) case where the length and the gap size are allowed to vary.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Denote

$$P_n := \{x \in X : T^n x = x\}$$
 (periodic points)
$$B_{\varepsilon}^n(x) := \{y \in X : d(T^k y, T^k x) < \varepsilon \quad k = 0, \dots, n\}$$
 (Bowen ball)

Definition (Global Specification)

A dynamical systems has global specification provided: For every $\varepsilon > 0$ there exists $M(\varepsilon) \in \mathbb{N}$ such that: for any $x_1, ..., x_k \in X$ and $n \in \mathbb{N}$ and $M > M(\varepsilon)$, there exists $p \in P_{k(n+M)}$ with $T^{(i-1)(n+M)}p \in B^n_{\varepsilon}(x_i)$ i = 1, ..., k.

Concatenation of k orbit pieces of length n can be shadowed by a single periodic orbit, provided sufficient time is allowed to migrate from one orbit to the next.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Orbits that are close enough at their initial and terminal time periods can by shadowed by periodic points.

```
Definition (Local Specification)
```

A dynamical systems has local specification provided: For every $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ and $N(\varepsilon) \in \mathbb{N}$ such that: for any $x_1, ..., x_k \in X$ and $n > N(\varepsilon)$ with

 $d(T^n x_i, x_{i+1}) < \delta \qquad i = 1, \dots, k \quad \text{with} \quad x_{k+1} = x_1$

there exists $p \in P_{kn}$ with

$$T^{(i-1)n}p \in B^n_{\varepsilon}(x_i)$$
 $i=1,...,k.$

For topologically mixing systems:

Local specification \implies Global specification

・ロン ・回と ・ヨン ・

3

Orbits that are close enough at their initial and terminal time periods can by shadowed by periodic points.

Definition (Local Specification)

A dynamical systems has local specification provided: For every $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ and $N(\varepsilon) \in \mathbb{N}$ such that: for any $x_1, ..., x_k \in X$ and $n > N(\varepsilon)$ with

 $d(T^{n}x_{i}, x_{i+1}) < \delta$ i = 1, ..., k with $x_{k+1} = x_{1}$

there exists $p \in P_{kn}$ with

$$T^{(i-1)n}p \in B^n_{\varepsilon}(x_i)$$
 $i=1,...,k.$

For topologically mixing systems:

Local specification \implies Global specification

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Independence (of random variables) for (periodic) orbits

Definition (Global ε -independence)

Let $\varepsilon > 0$ and $k, n, M \in \mathbb{N}$. A subset $\mathcal{P} \subset P_{k(n+M)}$ is ε -independent if there exist:

- a subset $E \subset P_{n+M}$ which $(n, 3\varepsilon)$ -spans $P_{k(n+M)}$
- a bijection $\pi: E^k \to \mathcal{P}$

such that for any $\mathbf{p} = (p_1, ..., p_k) \in E^k$ and $1 \leq i \leq k$,

$$T^{(i-1)(n+M)}(\pi(\mathbf{p})) \in B^n_{\varepsilon}(p_i).$$

Definition (Local ε -independence)

Let $\varepsilon > 0$ and $k, n \in \mathbb{N}$. Let \mathcal{U} be a family of open sets and $A \in \bigvee_{i=0}^{k-1} \mathcal{T}^{-in}\mathcal{U}$. A subset $\mathcal{P} \subset P_{kn}$ is locally ε -independent with respect to A if there exist

- $E_i \subset T^{(i-1)n}A$, $1 \leq i \leq k$
- a bijection π from $\prod_{i=1}^{k} E_i$ to \mathcal{P}

such that for any $\underline{\mathbf{x}} = (x_1, ..., x_k) \in \prod_{i=1}^k E_i$ and $1 \leq i \leq k$.

 $T^{(i-1)n}(\pi(\underline{\mathbf{x}})) \in B^n_{\varepsilon}(x_i).$

・ロン ・回と ・ヨン ・

3

Independence (of random variables) for (periodic) orbits

Definition (Global ε -independence)

Let $\varepsilon > 0$ and $k, n, M \in \mathbb{N}$. A subset $\mathcal{P} \subset P_{k(n+M)}$ is ε -independent if there exist:

- a subset $E \subset P_{n+M}$ which $(n, 3\varepsilon)$ -spans $P_{k(n+M)}$
- a bijection $\pi: E^k \to \mathcal{P}$

such that for any $\underline{\mathbf{p}} = (p_1, ..., p_k) \in E^k$ and $1 \leqslant i \leqslant k$,

$$T^{(i-1)(n+M)}(\pi(\mathbf{p})) \in B^n_{\varepsilon}(p_i).$$

Definition (Local ε -independence)

Let $\varepsilon > 0$ and $k, n \in \mathbb{N}$. Let \mathcal{U} be a family of open sets and $A \in \bigvee_{i=0}^{k-1} T^{-in} \mathcal{U}$. A subset $\mathcal{P} \subset P_{kn}$ is locally ε -independent with respect to A if there exist

- $E_i \subset T^{(i-1)n}A$, $1 \leq i \leq k$
- a bijection π from $\prod_{i=1}^{k} E_i$ to \mathcal{P}

such that for any $\underline{\mathbf{x}} = (x_1, ..., x_k) \in \prod_{i=1}^k E_i$ and $1 \leq i \leq k$.

$$T^{(i-1)n}(\pi(\underline{\mathbf{x}})) \in B^n_{\varepsilon}(x_i).$$

Let $\nu_{\mathcal{P}_l}$ denote the equidistribution on a set \mathcal{P}_l of periodic points .

Theorem (Main Theorem – global version)

Let $\{\epsilon_l > 0, k_l, n_l, M_l \in \mathbb{N}\}_{l \in \mathbb{N}}$ be sequences of numbers, with $\lim_{l \to \infty} k_l = \infty$. Consider a dynamical system (X, T) with global specification and a sequence of ε_l -independent sets \mathcal{P}_l . For observables φ_l satisfying

- an oscillation condition
- a gap condition

the Lindeberg condition with respect to the uniform measure $\nu_{\mathcal{P}_l}$ on \mathcal{P}_l implies the central limit theorem:

$$\lim_{l\to\infty}\nu_{\mathcal{P}_l}\left(\left\{x\in X:\sum_{j=0}^{k_l(n_l+M_l)}\left(\varphi_l(T^jx)-\mathbb{E}_{\nu_{\mathcal{P}_l}}(\varphi_l)\right)\leqslant t\,s_l\right\}\right)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^t e^{-u^2/2}du$$

イロト イポト イヨト イヨト

3

where

ere
$$s_l^2 := \sum_{j=1}^{\kappa} \sigma_{\mathcal{P}_l}^2(S_{a_j}^{a_j+n_l}\varphi_l)$$
 and $a_j = (j-1)(n_l+M_l).$

The reverse holds true under a uniform oscillation condition.

Oscillation condition

$$\lim_{l\to\infty} \frac{1}{s_l^i}\sum_{j=1}^{k_l}\int \left(\omega_{a_j}^{a_j+n_l}(\varphi_l,4\epsilon_l,p)\right)^id\nu_{\mathcal{P}_l}(p)=0,\quad i=1,2,$$

where $\omega_m^n(\varphi,\epsilon,x) := \sup\left\{ \left| S_m^n \varphi(x) - S_m^n \varphi(y) \right| \colon y \in B_\epsilon^n(T^m x) \right\}$

Gap condition

$$\lim_{l\to\infty} \frac{1}{s_l^2} \sigma_{\mathcal{P}_l}^2 \left(\sum_{j=1}^{k_l} S_{a_j+n_l}^{a_{j+1}} \varphi_l \right) = 0.$$

Lindeberg condition

$$\lim_{l\to\infty}\frac{1}{s_l^2}\sum_{j=1}^{k_l}L_{\mathcal{P}_l}(S_{a_j}^{a_j+n_l}\varphi_l,\eta s_l)=0,\quad\forall\eta>0$$

where

$$L_P(\varphi,\eta) := \int (\varphi(z) - \mathbb{E}_P(\varphi))^2 \mathbb{1}_{\{|\varphi(z) - \mathbb{E}_P(\varphi)| > \eta\}}(z) d\nu_P.$$

<ロ> <四> <四> <日> <日> <日> <日> <日</p>

2

Uniform oscillation Condition

$$\lim_{l\to\infty} \frac{1}{\sigma_{\mathcal{P}_l}^2(S_0^{n_l}\varphi_l)} \int \left(\omega_0^{n_l}(\varphi_l, 2\epsilon_l, p)\right)^2 d\nu_{\mathcal{P}_l}(p) = 0$$

Theorem A holds for the uniform measures $\nu_{\mathcal{P}_I}$ on the ε_I independant sets.

But, accounting for multiplicity one also has:

Theorem

There exists a weighted distribution on the set of all periodic points for which a Lindeberg-type Central Limit Theorem as Theorem A holds.

Moreover, $\varepsilon\text{-independent}$ (sub)-sets carry a rich structure. Indeed, for systems with a unique mesasure of maximal entropy μ_0

Theorem

Any sequence of uniform distributions on ε -independant sets converges to the measure of maximal entropy μ_0 (in the weak topology)

-

EXTRA CREDIT

For $\nu_{\mathcal{P}_l}$ typical periodic points, Birkhoff averages of full orbits approximate the expectation of Lipshitz observables.

Theorem (Theorem B)

Consider a positively expansive dynamical system (X, T) with global specification.

Let $\{\epsilon_l > 0, k_l, n_l, M_l \in \mathbb{N}\}_{l \in \mathbb{N}}$ be sequences of numbers with some mild conditions on the constants $N_l = k_l(n_l + M_l)$ and ε_l . Consider a sequence of ε_l -independent sets $\mathcal{P}_l \subset P_{k_l(n_l + M_l)}$.

For any Lipschitz function ψ and any $\eta > 0$ one has

$$\lim_{l\to\infty}\nu_{\mathcal{P}_l}\left(\left\{\left|\frac{1}{N_l}\sum_{j=0}^{N_l}\left(\psi(T^jx)-\mathbb{E}_{\nu_{\mathcal{P}_l}}(\psi)\right)\right|\leqslant k_l^{-\frac{1}{2}+\eta}\right\}\right)=1.$$

Moreover, if (X, T) admits a unique measure of maximal entropy and

$$\sum_{l\in\mathbb{N}}\frac{1}{\sqrt{k_l}} \cdot \sup_{\|\psi\|_{\mathrm{Lip}}\leqslant 1} \frac{\mathbb{E}_{\mathcal{P}_l}(S^{n_l}\psi)^4}{\sigma_{\mathcal{P}_l}^4(S^{n_l}\psi)} < \infty,$$

then the uniform distributions over the orbit of random sequences of periodic points $p_l \in \mathcal{P}_l$ converges to the measure of maximal entropy.

EXTRA CREDIT

Theorem (Main Theorem – Local version)

Let $\{\epsilon_l > 0, k_l, n_l, M_l \in \mathbb{N}\}_{l \in \mathbb{N}}$ be sequences of numbers, with $\lim_{l \to \infty} k_l = \infty$.

Consider a dynamical system (X, T) with local specification and a sequence of locally ε_l -independent sets \mathcal{P}_l . For observables f_l satisfying

• an oscillation condition

the Lindeberg condition with respect to the uniform measure $\nu_{\mathcal{P}_l}$ on \mathcal{P}_l holds

if and only if

the central limit theorem holds

$$\lim_{l\to\infty}\nu_{\mathcal{P}_l}\left(\left\{x\in X:\sum_{j=0}^{k_l(n_l+M_l)}\left(\varphi_l(T^jx)-\mathbb{E}_{\nu_{\mathcal{P}_l}}(\varphi_l)\right)\leqslant t\,s_l\right\}\right)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^t e^{-u^2/2}du$$

and the array is asymptotically negligible, i.e.

$$\lim_{l\to\infty}\max_{1\leqslant j\leqslant k_l}\nu_{\mathcal{P}_l}\Big(\Big\{\Big|S^{a_j+n_l}_{a_j}\varphi_l-\mathbb{E}_{\nu_{\mathcal{P}_l}}(S^{a_j+n_l}_{a_j}\varphi_l)\Big|\geqslant \eta s_l\Big\}\Big)=0$$

э

EXTRA CREDIT

Theorem (Theorem D)

Let (X, T) be an expansive, topologically mixing dynamical system with the local specification property and a unique measure of maximal entropy. Then - with respect to the unique measure of maximal entropy μ - the class of wildly oscillating functions in $L^3(\mu)$ satisfying a condition on the moments and with integrable local variance belongs to the partial domain of attraction of a mixed normal distribution, i.e. a subsequence of properly centered and normed partial sums converges weakly to a mixed normal distribution.

э.

Thank you!

э.