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Motivation and Definition

Let (X ,T ,B, µ) be a probability space:

T : X → X a measurable, expansive transformation of a compact metric space X .

B the Borel σ-algebra.

µ a T -invariant ergodic probability.

For any observable function ϕ : X → R denote the Cesàro sum by

1
n
Sn

0ϕ(x) :=
1
n

n−1∑
i=0

ϕ(T ix)

and let
Eµ(ϕ) :=

∫
X
ϕ dµ.

Theorem (Birkhoff)

Given a ergodic T -invariant probability µ and an observable function ϕ : X → R with
ϕ ∈ L1(µ). Then

lim
n→∞

µ

{
x ∈ X :

∣∣∣∣Sn
0ϕ(x)− nEµ(ϕ)

n

∣∣∣∣ 6= 0
}

= 0.
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Motivation and Definition

How does the Cesàro sum of ϕ distribute around the expectation?

Definition (Central Limit Theorem)

The measure µ satisfies the Central Limit Theorem with respect to a class of
observables H if there exists σ > 0 such that, for every ϕ ∈ H :

lim
n→∞

µ

{
x ∈ X :

Sn
0ϕ(x)− nEµ(ϕ)√

n
≤ t

}
=

1
√
2πσ

∫ t

−∞
e−u2/2σ2du.

Question

How robust is the Central Limit Theorem? Does it still hold for :

approximations of the measure µ?

incomplete readings of Cesàro sums (time)?

approximate readings of Cesàro sums (space)?

New methods of proof of the Central Limit theorem based on a specification property
by periodic points (other reference points work as well).
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Dynamical Arrays

To describe incomplete and approximate Cesàro sums introduce dynamical arrays.
Uniform case:

Definition (Dynamical Array)

For l ∈ N and aj ∈ N, j = 1, . . . , kl consider intervals Ij = [aj , aj + nl ] of uniform
length nl and uniform gap size Ml = aj+1 − (aj + nl ).

A Dynamical Array is a sequence of real valued functions defined as

S
aj+nl
aj ϕl (x) :=

aj+nl∑
i=aj

ϕl

(
T ix

)
, j = 1, . . . , kl

where the ϕl : X → R.

One can also consider the more general (non-uniform) case where the length and the
gap size are allowed to vary.
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Specification

Denote

Pn := {x ∈ X : T nx = x} (periodic points)

Bn
ε (x) := {y ∈ X : d(T ky ,T kx) < ε k = 0, . . . , n} (Bowen ball)

Definition ( Global Specification )

A dynamical systems has global specification provided:
For every ε > 0 there exists M(ε) ∈ N such that:

for any x1, ..., xk ∈ X and n ∈ N and M > M(ε), there exists p ∈ Pk(n+M) with

T (i−1)(n+M)p ∈ Bn
ε (xi ) i = 1, ..., k.

Concatenation of k orbit pieces of length n can be shadowed by a single periodic orbit,
provided sufficient time is allowed to migrate from one orbit to the next.
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Specification (Local)

Orbits that are close enough at their initial and terminal time periods can by shadowed
by periodic points.

Definition ( Local Specification )

A dynamical systems has local specification provided:
For every ε > 0 there exists δ(ε) > 0 and N(ε) ∈ N such that:

for any x1, ..., xk ∈ X and n > N(ε) with

d(T nxi , xi+1) < δ i = 1, . . . k with xk+1 = x1

there exists p ∈ Pkn with

T (i−1)np ∈ Bn
ε (xi ) i = 1, ..., k.

For topologically mixing systems:

Local specification =⇒ Global specification
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ε-independence

Independence (of random variables) for (periodic) orbits

Definition (Global ε-independence)

Let ε > 0 and k, n,M ∈ N. A subset P ⊂ Pk(n+M) is ε-independent if there exist:

a subset E ⊂ Pn+M which (n, 3ε)-spans Pk(n+M)

a bijection π : E k → P
such that for any p = (p1, ..., pk ) ∈ E k and 1 6 i 6 k,

T (i−1)(n+M)(π(p)) ∈ Bn
ε (pi ).

Definition (Local ε-independence)

Let ε > 0 and k, n ∈ N. Let U be a family of open sets and A ∈
∨k−1

i=0 T−in U . A
subset P ⊂ Pkn is locally ε-independent with respect to A if there exist

Ei ⊂ T (i−1)nA, 1 6 i 6 k

a bijection π from
∏k

i=1 Ei to P

such that for any x = (x1, ..., xk ) ∈
∏k

i=1 Ei and 1 6 i 6 k.

T (i−1)n(π(x)) ∈ Bn
ε (xi ).
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Theorem A

Let νPl
denote the equidistribution on a set Pl of periodic points .

Theorem (Main Theorem – global version)

Let {εl > 0, kl , nl ,Ml ∈ N}l∈N be sequences of numbers, with lim
l→∞

kl =∞.

Consider a dynamical system (X ,T ) with global specification and a sequence of
εl -independent sets Pl . For observables ϕl satisfying

an oscillation condition

a gap condition

the Lindeberg condition with respect to the uniform measure νPl
on Pl implies the

central limit theorem:

lim
l→∞

νPl

{x ∈ X :

kl (nl+Ml )∑
j=0

(
ϕl (T

jx)− EνPl
(ϕl )

)
6 t sl

} =
1
√
2π

∫ t

−∞
e−u2/2du

where s2l :=
k∑

j=1

σ2
Pl

(S
aj+nl
aj ϕl ) and aj = (j − 1)(nl +Ml ).

The reverse holds true under a uniform oscillation condition.
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Conditions

Oscillation condition

lim
l→∞

1
s il

kl∑
j=1

∫ (
ω
aj+nl
aj (ϕl , 4εl , p)

)i
dνPl

(p) = 0, i = 1, 2,

where ωn
m(ϕ, ε, x) := sup

{∣∣∣Sn
mϕ(x)− Sn

mϕ(y)
∣∣∣ : y ∈ Bn

ε (T
mx)

}

Gap condition

lim
l→∞

1
s2l

σ2
Pl

 kl∑
j=1

S
aj+1
aj+nl

ϕl

 = 0.

Lindeberg condition

lim
l→∞

1
s2l

kl∑
j=1

LPl
(S

aj+nl
aj ϕl , ηsl ) = 0, ∀η > 0

where
LP(ϕ, η) :=

∫ (
ϕ(z)− EP(ϕ)

)2
1{|ϕ(z)−EP (ϕ)|>η}(z)dνP .
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The uniform oscillation condition

Uniform oscillation Condition

lim
l→∞

1
σ2
Pl

(S
nl
0 ϕl )

∫ (
ω
nl
0 (ϕl , 2εl , p)

)2
dνPl

(p) = 0
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Relevance of the ε-independant sets

Theorem A holds for the uniform measures νPl
on the εl independant sets.

But, accounting for multiplicity one also has:

Theorem

There exists a weighted distribution on the set of all periodic points for which a
Lindeberg-type Central Limit Theorem as Theorem A holds.

Moreover, ε-independent (sub)-sets carry a rich structure. Indeed, for systems with a
unique mesasure of maximal entropy µ0

Theorem

Any sequence of uniform distributions on ε-independant sets converges to the measure
of maximal entropy µ0 (in the weak topology)
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Theorem B

EXTRA CREDIT

For νPl
typical periodic points, Birkhoff averages of full orbits approximate the

expectation of Lipshitz observables.

Theorem (Theorem B)

Consider a positively expansive dynamical system (X ,T ) with global specification.

Let {εl > 0, kl , nl ,Ml ∈ N}l∈N be sequences of numbers with some mild conditions on
the constants Nl = kl (nl +Ml ) and εl . Consider a sequence of εl -independent sets
Pl ⊂ Pkl (nl+Ml )

.

For any Lipschitz function ψ and any η > 0 one has

lim
l→∞

νPl

{∣∣∣∣∣∣ 1Nl

Nl∑
j=0

(
ψ(T jx)− EνPl

(ψ)
)∣∣∣∣∣∣ 6 k

− 1
2+η

l

} = 1.

Moreover, if (X ,T ) admits a unique measure of maximal entropy and

∑
l∈N

1
√
kl
· sup
‖ψ‖Lip61

EPl
(Snlψ)4

σ4
Pl

(Snlψ)
<∞,

then the uniform distributions over the orbit of random sequences of periodic points
pl ∈ Pl converges to the measure of maximal entropy.

Samuel Senti (UFRJ - Federal University of Rio de Janeiro)
Fluctuations of Ergodic Sums on Periodic Orbits under Specification



Local version

EXTRA CREDIT

Theorem (Main Theorem – Local version)

Let {εl > 0, kl , nl ,Ml ∈ N}l∈N be sequences of numbers, with lim
l→∞

kl =∞.

Consider a dynamical system (X ,T ) with local specification and a sequence of locally
εl -independent sets Pl . For observables fl satisfying

an oscillation condition

the Lindeberg condition with respect to the uniform measure νPl
on Pl holds

if and only if

the central limit theorem holds

lim
l→∞

νPl

{x ∈ X :

kl (nl+Ml )∑
j=0

(
ϕl (T

jx)− EνPl
(ϕl )

)
6 t sl

} =
1
√
2π

∫ t

−∞
e−u2/2du

and the array is asymptotically negligible, i.e.

lim
l→∞

max
16j6kl

νPl

({ ∣∣∣Saj+nl
aj ϕl − EνPl

(S
aj+nl
aj ϕl )

∣∣∣ > ηsl

})
= 0
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EXTRA CREDIT

Theorem (Theorem D)

Let (X ,T ) be an expansive, topologically mixing dynamical system with the local
specification property and a unique measure of maximal entropy. Then - with respect
to the unique measure of maximal entropy µ- the class of wildly oscillating functions
in L3(µ) satisfying a condition on the moments and with integrable local variance
belongs to the partial domain of attraction of a mixed normal distribution, i.e. a
subsequence of properly centered and normed partial sums converges weakly to a
mixed normal distribution.
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Thank you!
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