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Michal Misiurewicz — a student’s perspective
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Spaces of transitive interval maps

SERGII KOLYADA, MICHAL MISIUREWICZ and L’'UBOMIR SNOHA§

The area of dynamical systems where one investigates dynamical properties that can be
described in topological terms is called topological dynamics. Investigating the topological
properties of spaces of maps that can be described in dynamical terms is in a sense the
opposite idea. Therefore we propose to call this area dynamical topology. It is on the
boundary between dynamical systems and topology, but, in our opinion, much closer to
dynamical systems, because most of the tools that can be used there are from dynamics.
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Definitions:
Our space of maps:
Tem = {f : [0,1] — [0,1]; f is continuous, transitive, and piecewise monotone}
We use the metric of uniform convergence:
d(F.g) = max,I7(x) - g(x)
Piecewise monotone means finitely many critical points:
Crit(f) = {0,1} U{X; f is not monotone on any neighborhood of x}

The modality of f is # Crit(f) N (0,1). We usually make perturbations preserving
modality, i.e. in a subspace:

Tm C Tpm — the subspace of maps of modality m.
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Constant Slope:

f € Tpm has constant slope X if |f'(x)| = A for x ¢ Crit(f).

A constant slope model for f € Tpy is a conjugate map f = ¢ Lo fogp
of constant slope, where the conjugating homeomorphism ¢ is
orientation-preserving (increasing).

0,1

- constant slope

[0,1]
Lﬂl isﬁEHomeoJr([OJ])

[0,1]] ———— [0,1]

f - transitive, p.m.
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Theorem Parry (1966), Alseda and Misiurewicz (2015)
Each map f € Tpy has a unique constant slope model.
The conjugating homeomorphism is likewise unique.
The constant slope is A\ = exp h(f).

Objects of interest:

d: Tpm — Tem, ®(f) = the constant slope model for f
W : Tpm — Homeo ([0, 1]), W(f) = the conjugating homeomorphism
h:Tpm — R, h(f) = the topological entropy of f

Question: How does ® behave?

Is ® continuous?
In other words, as g =% f, does ®(g) = ®(f)?
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Question: As g = f, does d(g) = d(f)?
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Question: As g = f, does d(g) = d(f)?

— limit
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Question: As g = f, does d(g) = d(f)?

—f — ()
—g — ®(g)
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— limit — limit

Samuel Roth (Opava) Constant Slope & Perturbation June 13, 2019



Conclusion: ® is not continuous.

There are two ways to get g, = f but ®(g,) % ®(f).

Obstacle (1): Jumps in entropy.
Obstacle (2): Jumps in modality.

Restricting to maps of a fixed modality m,

S T — Ty Om(f) = the constant slope model for £

Revised question: Is ¢, continuous?
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Theorem Misiurewicz (2001)
h: Tm — R has discontinuity points if and only if m > 5.

f has a 2-cycle of . The 2nd iterates
.. . Perturbation near .
critical points and the 2-cvcle near one point of
entropy h(f) < log2 4 the 2-cycle

— & —r —g

|

Figure: A discontinuity point of h: Ts — R.

Theorem Misiurewicz, Alseda (2015)
If f € T is a discontinuity point of h, then it is a discontinuity point of ®,,.
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Corollary 2. If f € T, is a point of discontinuity of the topological entropy as a
function from T,, to R, then f is also a point of discontinuity of the operator @,,.

We conjecture that the operator ®,, is continuous at every point of continuity of
the topological entropy on Tp,.
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We confirm that conjecture:

Theorem 1
If g = f in Ty, and h(g,) — h(f), then ®(g,) = P(f).

Corollary ¢, is continuous for m < 4 and discontinuous for m > 5.
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Counting preimages
f
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Counting preimages
f f2 f3 4 o

7 )i ¥ A

5 - fo 1 —n(y) — 1+v5
FE—— HIer;Onlog#f (x) = log 5
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Counting preimages
f f2 f3 4 o

’ )i v A

2
2

n_|
#1700 |

Well-known fact
Let f € Tpm, x € [0,1]. Then preimage counts grow like the entropy:

5 - fo 1 —n(y) — 1+v5
FE—— HIer;Onlog#f (x) = log 5

1 3 4
1 3 5

lim 1 log #f~"(x) = h(f).

n—oo N
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Counting preimages
f f2 f3 4 o

V V IR

2
2

n_|

#77(x) |
Well-known fact

Let f € Tpm, x € [0,1]. Then preimage counts grow like the entropy:

5 - sl —n(y) — 1+v5
FE—— HIer;Onlog#f (x) = log 5

1 3 4
1 3 5

lim 1 log #f~"(x) = h(f).

n—oo N
Proof
(<) The number of laps of " grows like the entropy.
(>) By transitivity, x has a preimage in each horseshoe, and entropy is given by
horseshoes.
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Counting preimages

Question What about the “subexponential term?”
) f~"(x
lim #f"(x) -7

n—oo  enh(f)
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Counting preimages

Question What about the “subexponential term?”
) f~"(x
lim #f"(x) -7

n—oo  enh(f)

e Lasota and Yorke (1973): Convergence a.e. w.r.t. the measure of constant Jacobian.

e A transitive subshift of finite type is called positive recurrent iff the analogous limit is not zero.

Samuel Roth (Opava) Constant Slope & Perturbation June 13, 2019



Counting preimages

Question What about the “subexponential term?”
) f~"(x
lim #f"(x) -7

n—oo  enh(f)

e Lasota and Yorke (1973): Convergence a.e. w.r.t. the measure of constant Jacobian.
e A transitive subshift of finite type is called positive recurrent iff the analogous limit is not zero.
Theorem 2
Let f € Tpm, x € [0,1]. When we count preimages, the subexponential term does
not converge to zero:
, #f"(x)
lim sup

M SUp = oh) > 0.

Interpretation
Transitive piecewise monotone interval maps are “positive recurrent.”
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I
Theorem 1 If g, = f in Ty, and h(g,) — h(f), then ®(g,) = ().

0,1 -2 [0,1] 0,1 2 10,1]
wnl lwn % lv A = exp h(f)
[0,1] T) [0,1] [0,1] f) [0,1]
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Question: What happens to the conjugating homeomorphism?
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I
Theorem 1 If g, = f in Ty, and h(g,) — h(f), then ®(g,) = ().

0,1 -2 [0,1] 0,1 2 10,1]
wnl lwn “pl lv A = exp h(f)
[0,1] T) [0,1] [0,1] f) [0,1]

For piecewise monotone interval maps:
transitive <= mixing < locally eventually onto

If f is transitive but not mixing, then it has a unique fixed point e, it interchanges
[0, €] with [e, 1], and the restricted maps 2| ¢, f?|[e,1] are both mixing.

In this presentation, we assume that f is mixing.
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-
Theorem 1 If g, = f in T, and h(g,) — h(f), then ®(g,) = o(f).

0.1 €% o jo,1 2 o1
wnl lw" % lw A = exp h(f)
0.1] —— [0.1] 0.1 —— [0.1]

Fact “Accessible endpoints”
F2((0,1)) =[0,1]

Chaos on the Interval
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Theorem 1 If g, = f in T, and h(g,) — h(f), then ®(g,) = o(f).

0,1 2 [0,1] 0,1 2 0,1
’lpnl lw" wl lw A = exp h(f)
Fact “Accessible endpoints” Lemma “Equi-accessible endpoints”
F2((0.1)) =[0.1] 3p.¢>0: (g€ TmAd(f,g) <() =

g%(lp,1 = p]) =[0,1]

Chaos on the Interval

Sytvie Ruette
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I
Theorem 1 If g, = f in Ty, and h(g,) — h(f), then ®(g,) = ().

[0,1] &2, 10,1]

o o

[07 1] T> [07 1]

Fact “Accessible endpoints”

F2((0,1)) = [0,1]

[0,1] —— [0,1]

sol ls@ A = exp h(f)
0.1 —— (0.1

Lemma “Equi-accessible endpoints”
Ip,(>0:(geTmNd(f,g)<() =
g2([P, 1- P]) = [07 1]

f —g
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Theorem 1 If g, = f in T, and h(g,) — h(f), then ®(g,) = o(f).

0.1 €% o jo,1 2 o1
wnl lw" % lv A = exp h(f)
0.1] —— [0.1] 0.1 —— [0.1]

Fact “Uniformly le.o.”
Ve >0, dK :
y—x>€ = fK([x,y]) =[0,1].

Chaos on the Interval

Syivie Ruette
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Theorem 1 If g, = f in T, and h(g,) — h(f), then ®(g,) = o(f).

0.1 €% [0,1] 0,1 22 [0,1]
wnl lw" % lv A = exp h(f)
010 —— 0.1 0.1 —— [0,1]
Fact “Uniformly le.o.” Lemma “Equi-uniformly l.e.o.”
Ve >0, dK : Ve >0, 3K, N, Vn> N :
y—x>e= fA(xy)=[0,1.  y-x>e= g (xy])=[01].

Chaos on the Interval

Syivie Ruette
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-
Theorem 1 If g, = f in T, and h(g,) — h(f), then ®(g,) = o(f).

0,1 -2 [0,1] 0,1 2 10,1]
’lan( lw" wl ls@ A = exp h(f)
Fact “Uniformly le.o.” Lemma “Equi-uniformly l.e.o.”
Ve >0, dK : Ve >0, 3K, N, Vn> N :
y—x>e¢ — fK([x,y]) =[0,1]. y—x>e = g, +2([x y]) =[0,1].
Proof
Choose N such that for n > N,
et d(fK, gi) < p and d(f2,g2) < ¢. Then

grogx([x.y]) 2 g3(lp,1—p]) = [0,1].
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Theorem 1 If g, = f in Ty, and h(g,) — h(f), then ®(g,) = ().

0,1 -2 [0,1] 0,1 2 10,1]
wnl lwn wl lv A = exp h(f)
[0,1] T) [0,1] [0,1] f) [0,1]

Proposition

(vn) is an equicontinuous family.
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Theorem 1 If g, = f in Ty, and h(g,) — h(f), then ®(g,) = ().

0,1 -2 [0,1] 0,1 2 10,1]
wnl lwn “pl lv A = exp h(f)
[0,1] T) [0,1] [0,1] f) [0,1]

Proposition
(vn) is an equicontinuous family.

Proof
Let L be a common Lipschitz constant for the maps ®(g,).
g2 (boy]) = 10,1] = (®(ga)" " ([y > 0, y]) = [0,1]
= P,y Yy x> LT
Taking 6 = L=%=2, we have shown that
Ve>0, IN,5, Vn>N: y—x>e = ¢ty —¢ x> 6.
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Theorem 1 If g, = f in Ty, and h(g,) — h(f), then ®(g,) = ().

0,1 -2 [0,1] 0,1 2 10,1]
wnl lwn wl lv A = exp h(f)
[0,1] T [0,1] [0,1] f) [0,1]

Proposition
(vn) is an equicontinuous family.

Proof
Let L be a common Lipschitz constant for the maps ®(g,).

g2 (I y) = [0.1] = (9(8x)" " ([ x5 ty]) = [0.1]
= U,y — U, x> LT
Taking 6 = L=%=2, we have shown that
Ve>0, IN,5, Vn>N: y—x>e = ¢ty —¢ x> 6.

Corollary Arzela-Ascoli:
Every subsequence of (¢,) has a further subsequence which converges uniformly.
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I
Theorem 1 If g, = f in Ty, and h(g,) — h(f), then ®(g,) = ().

0,1 -2 [0,1] 0,1 2 10,1]
wnl lwn wl lv A = exp h(f)
[0,1] T [0,1] [0,1] f) [0,1]

Properties of a subsequential limit ¢ of the sequence (,):

Nondecreasing and surjective.
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0,1 -2 [0,1] 0,1 2 10,1]
wnl lwn wl lv A = exp h(f)
[0,1] T [0,1] [0,1] f) [0,1]

Properties of a subsequential limit ¢ of the sequence (,):

Nondecreasing and surjective.

AAAAAAAAAAAAAAAAAAAAAAAAA Lemma “Growth of Rectangles”
_______ L_1 If[y,y]NnCrit(f) = @ and we avoid flat spots, then

~~~~~~~~~~~~~~~~~~~~~~~~ 67— 0 ()] = A ) — 9T )L
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Theorem 1 If g, = f in Ty, and h(g,) — h(f), then ®(g,) = ().

0,1 -2 [0,1] 0,1 2 10,1]
wnl lwn wl lv A = exp h(f)
[0,1] T [0,1] [0,1] f) [0,1]

Properties of a subsequential limit ¢ of the sequence (,):

Nondecreasing and surjective.

Lemma “Growth of Rectangles”
_________ I 1__ 1 If[y,y’]NnCrit(f) = @ and we avoid flat spots, then

W) = ) = A ) — ¢ )
Lemma “Growth of Flat Spots”
(S If b ¢ Crit(f), then leny~1(fb) = Alen ) ~1(b).

Proposition “No Flat Spots”
1) is a homeomorphism.

Put f=¢lo for.
If [x, x'] N Crit(F) = 0, then |F(x") — F(x)| = A|x" — x|.
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I
Theorem 1 If g, = f in Ty, and h(g,) — h(f), then ®(g,) = ().

0,1 -2 [0,1] 0,1 2 10,1]
wnl lwn wl lv A = exp h(f)
[0,1] T [0,1] [0,1] f) [0,1]

Properties of a subsequential limit ¢ of the sequence (,):

Concluding Arguments

e By uniqueness of constant slope models,
f = ®(f).

e By uniqueness of the conjugating

--------------------- homeomorphism, ¥ = .

e e Therefore 1, = ¢.
e Therefore ®(g,) = ®(f).

Put f =¢lofor.
If [x, x"] N Crit(f ) 0, then |F(x') — F(x)| = A|x" — x|.
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Thanks so much for your attention :)
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