Superfractals among classical self-similar sets

Magdalena Nowak

Jan Kochanowski University in Kielce

Kraków 2019

Magdalena Nowak Superfractals among classical self-similar sets

ヘロト ヘヨト ヘヨト ヘヨト

A fuchsia for Proffessor Misiurewicz

Magdalena Nowak

Superfractals among classical self-similar sets

A pair
$$(X, \mathcal{F})$$
 is called a **fractal** (an **attractor**) if X - compact space

$${\mathcal F}$$
 - finite family of continuous selfmaps on ${\mathcal X}$

$$X = \bigcup_{f \in \mathcal{F}} f(X)$$

For compact $B \subset X$

$$\mathcal{F}(B) = \bigcup_{f \in \mathcal{F}} f(B)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

A pair
$$(X, \mathcal{F})$$
 is called a **fractal** (an **attractor**) if

- ${\mathcal F}$ finite family of continuous selfmaps on X
- $X = \bigcup_{f \in \mathcal{F}} f(X) = \mathcal{F}(X)$

For compact $B \subset X$

$$\mathcal{F}(B) = \bigcup_{f \in \mathcal{F}} f(B)$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

A pair
$$(X, \mathcal{F})$$
 is called a **fractal** (an **attractor**) if
X - compact space
 \mathcal{F} - finite family of continuous selfmaps on X
 $X = \bigcup_{f \in \mathcal{F}} f(X) = \mathcal{F}(X) = \lim_{n \to \infty} \mathcal{F}^n(B)$

For compact
$$B \subset X$$

 $\mathcal{F}(B) = \bigcup_{f \in \mathcal{F}} f(B)$

▲御▶ ▲ 臣▶ ▲ 臣▶

э

A pair
$$(X, \mathcal{F})$$
 is called a **fractal** (an **attractor**) is
X - compact space
 \mathcal{F} - finite family of continuous selfmaps on X
 $X = \bigcup_{f \in \mathcal{F}} f(X) = \mathcal{F}(X) = \lim_{n \to \infty} \mathcal{F}^n(B)$

For compact
$$B \subset X$$
$$\mathcal{F}(B) = \bigcup f(B)$$

 $f \in \mathcal{F}$

 (X, \mathcal{F}) - **metric fractal** (IFS-attractor) X - metric space Lipf < 1 for every $f \in \mathcal{F}$

 (X, \mathcal{F}) - **topological fractal** (TIFS-attractor) X - Hausdorff space \mathcal{F} - topologically contracting system [for every open cover \mathcal{U} of X there is $m \in \mathbb{N}$ such that for any maps $f_1, \ldots, f_m \in \mathcal{F}$ the set $f_1 \circ \cdots \circ f_m(X) \subset U \in \mathcal{U}$]

f

Simple observations

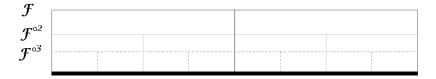
Observation 1

$$(X,\mathcal{F})$$
 is a metric fractal $\Rightarrow (X,\mathcal{F})$ is a topological fractal

Observation 2

$$(X,\mathcal{F})$$
 is a metric/topological fractal $onumber u$
For natural $n>1$, $(X,\mathcal{F}^{\circ n})$ is a metric/topological fractal

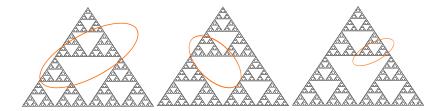
where
$$\mathcal{F}^{\circ n} = \{f_1 \circ \cdots \circ f_n; f_1, \ldots, f_n \in \mathcal{F}\}$$



ヘロア 人間ア 人間ア 人間ア

э

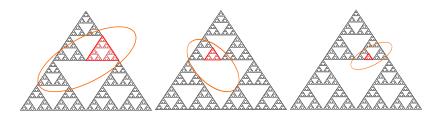
A Hausdorff topological space X is called a **topological superfractal** if for every nonempty, open subset $U \subset X$, (X, \mathcal{F}) is a topological fractal for \mathcal{F} such that $f|_{X \setminus U} = const$ for every $f \in \mathcal{F}$.



Magdalena Nowak Superfractals among classical self-similar sets

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

A pair (B, \mathcal{P}) is called a **brick** of X if B is a subset of a topological space X \mathcal{P} is a finite family of continuous maps $B \to \overline{X \setminus B}$ such that $\bigcup_{f \in \mathcal{P}} f(B) = \overline{X \setminus B}$. Moreover if (B, \mathcal{F}) is a metric fractal for some \mathcal{F} then $(B, \mathcal{P}, \mathcal{F})$ is called **self-similar brick**.



< ロ > < 同 > < 回 > < 回 >

Theorem

X - compact metric space with self-similar brick $(B, \mathcal{P}, \mathcal{F})$. Then

(***) $\exists \varphi \colon X \to B$ Lip. on B cont. surjection, $\varphi|_{\overline{X \setminus B}} = const$

Theorem

X - compact metric space with self-similar brick $(B, \mathcal{P}, \mathcal{F})$. Then

(***) $\exists \varphi \colon X \to B$ Lip. on B cont. surjection, $\varphi|_{\overline{X \setminus B}} = const$ \Downarrow (**) $\forall f \in \mathcal{F}, \exists \varphi_f \colon X \to f(B)$ Lip. on B cont. sur. $\varphi_f|_{\overline{X \setminus B}} = const$

Theorem

X - compact metric space with self-similar brick $(B,\mathcal{P},\mathcal{F})$. Then

(*1) $\exists \mathcal{P}'$ finite family of continuous maps $X \to \overline{X \setminus B}$ s.t. $\bigcup_{f \in \mathcal{P}'} f(B) = \overline{X \setminus B}$ and $f|_{\overline{X \setminus B}} = const$ for every $f \in \mathcal{P}'$ (*2) $\exists \mathcal{F}'$ finite family of Linschitz on B continuous $X \to B$ s

a)
$$\bigcup_{f \in \mathcal{F}'} f(X) = B$$

b) $\operatorname{Lip} f|_B < 1$ for every $f \in \mathcal{F}'$

c)
$$f|_{\overline{X \setminus B}} = const$$
 for every $f \in \mathcal{F}'$

Theorem

X - compact metric space with self-similar brick $(B, \mathcal{P}, \mathcal{F})$. Then

(*1) $\exists \mathcal{P}' \text{ finite family of continuous maps } X \to \overline{X \setminus B} \text{ s.t.}$ $\bigcup_{f \in \mathcal{P}'} f(B) = \overline{X \setminus B} \text{ and } f|_{\overline{X \setminus B}} = const \text{ for every } f \in \mathcal{P}'$

(*2) $\exists \mathcal{F}'$ finite family of **Lipschitz on** *B*, continuous $X \to B$ s.t.

a)
$$\bigcup_{f \in \mathcal{F}'} f(X) = B$$

b) Lip
$$f|_B < 1$$
 for every $f \in \mathcal{F}'$
c) $f|_{\overline{X \setminus B}} = const$ for every $f \in \mathcal{F}'$

X is a topological fractal for family with maps s.t. $f|_{X \setminus B} = const$

(***)
$$\exists \varphi \colon X \to B$$
 Lipschitz on B , cont. surjection, $\varphi|_{\overline{X \setminus B}} = const$
 $\downarrow \downarrow$
(**) $\forall f \in \mathcal{F}, \exists \varphi_f \colon X \to f(B)$ Lip. on B , cont. sur. $\varphi_f|_{\overline{X \setminus B}} = const$

 $\text{For } f \in \mathcal{F} = \{g \colon B \to X; \text{Lip}g < 1\} \text{ take } \varphi_f := f \circ \varphi.$

(**)
$$\forall f \in \mathcal{F}, \exists \varphi_f \colon X \to f(B) \text{ Lip. on } B, \text{ cont. sur. } \varphi_f|_{\overline{X \setminus B}} = const$$

 \Downarrow
(*1) $\exists \mathcal{P}' \text{ finite family of continuous maps } X \to \overline{X \setminus B} \text{ s.t.}$
 $\bigcup_{f \in \mathcal{P}'} f(B) = \overline{X \setminus B} \text{ and } f|_{\overline{X \setminus B}} = const \text{ for every } f \in \mathcal{P}'$
(*2) $\exists \mathcal{F}' \text{ finite family of Lipschitz on } B, \text{ continuous } X \to B \text{ s.t.}$
a) $\bigcup_{f \in \mathcal{F}'} f(X) = B$
b) $\operatorname{Lip} f|_B < 1 \text{ for every } f \in \mathcal{F}'$
c) $f|_{\overline{X \setminus B}} = const \text{ for every } f \in \mathcal{F}'$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ

(**)
$$\forall f \in \mathcal{F}, \exists \varphi_f \colon X \to f(B) \text{ Lip. on } B, \text{ cont. sur. } \varphi_f|_{\overline{X \setminus B}} = const$$

 \Downarrow
(*1) $\exists \mathcal{P}' \text{ finite family of continuous maps } X \to \overline{X \setminus B} \text{ s.t.}$
 $\bigcup_{f \in \mathcal{P}'} f(B) = \overline{X \setminus B} \text{ and } f|_{\overline{X \setminus B}} = const \text{ for every } f \in \mathcal{P}'$
(*2) $\exists \mathcal{F}' \text{ finite family of Lipschitz on } B, \text{ continuous } X \to B \text{ s.t.}$
a) $\bigcup_{f \in \mathcal{F}'} f(X) = B$
b) $\operatorname{Lip} f|_B < 1 \text{ for every } f \in \mathcal{F}'$
c) $f|_{\overline{X \setminus B}} = const \text{ for every } f \in \mathcal{F}'$

 $\alpha = \max_{f \in \mathcal{F}} \operatorname{Lip} f < 1 \qquad \qquad \beta = \max_{f \in \mathcal{F}} \operatorname{Lip} \varphi_f|_B$

(**)
$$\forall f \in \mathcal{F}, \exists \varphi_f \colon X \to f(B) \text{ Lip. on } B, \text{ cont. sur. } \varphi_f|_{\overline{X \setminus B}} = const$$

 \Downarrow
(*1) $\exists \mathcal{P}' \text{ finite family of continuous maps } X \to \overline{X \setminus B} \text{ s.t.}$
 $\bigcup_{f \in \mathcal{P}'} f(B) = \overline{X \setminus B} \text{ and } f|_{\overline{X \setminus B}} = const \text{ for every } f \in \mathcal{P}'$
(*2) $\exists \mathcal{F}' \text{ finite family of Lipschitz on } B, \text{ continuous } X \to B \text{ s.t.}$
a) $\bigcup_{f \in \mathcal{F}'} f(X) = B$
b) $\operatorname{Lip} f|_B < 1 \text{ for every } f \in \mathcal{F}'$
c) $f|_{\overline{X \setminus B}} = const \text{ for every } f \in \mathcal{F}'$

$$\begin{split} &\alpha = \max_{f \in \mathcal{F}} \operatorname{Lip} f < 1 \qquad \qquad \beta = \max_{f \in \mathcal{F}} \operatorname{Lip} \varphi_f|_B \\ & \mathsf{Take} \ k \in \mathbb{N} \ \mathsf{s.t.} \ \alpha^k \beta < 1 \end{split}$$

Magdalena Nowak Superfractals among classical self-similar sets

ヘロト 不得 トイヨト イヨト

(**)
$$\forall f \in \mathcal{F}, \exists \varphi_f \colon X \to f(B) \text{ Lip. on } B, \text{ cont. sur. } \varphi_f|_{\overline{X \setminus B}} = const$$

 \Downarrow
(*1) $\exists \mathcal{P}' \text{ finite family of continuous maps } X \to \overline{X \setminus B} \text{ s.t.}$
 $\bigcup_{f \in \mathcal{P}'} f(B) = \overline{X \setminus B} \text{ and } f|_{\overline{X \setminus B}} = const \text{ for every } f \in \mathcal{P}'$
(*2) $\exists \mathcal{F}' \text{ finite family of Lipschitz on } B, \text{ continuous } X \to B \text{ s.t.}$
a) $\bigcup_{f \in \mathcal{F}'} f(X) = B$
b) $\operatorname{Lip} f|_B < 1 \text{ for every } f \in \mathcal{F}'$
c) $f|_{\overline{X \setminus B}} = const \text{ for every } f \in \mathcal{F}'$

$$\begin{split} \alpha &= \max_{f \in \mathcal{F}} \operatorname{Lip} f < 1 \qquad \beta = \max_{f \in \mathcal{F}} \operatorname{Lip} \varphi_f|_B \\ \text{Take } k \in \mathbb{N} \text{ s.t. } \alpha^k \beta < 1 \\ \mathcal{F}' &= \{ g \circ \varphi_f \colon X \to \frac{B; g \in \mathcal{F}^{\circ k}; f \in \mathcal{F} \} \\ \mathcal{P}' &= \{ g \circ \varphi_f \colon X \to \overline{X \setminus B}; g \in \mathcal{P}; f \in \mathcal{F} \} \end{split}$$

<ロト <部 > < E > < E > <

æ

(*1) $\exists \mathcal{P}'$ finite family of continuous maps $X \to \overline{X \setminus B}$ s.t. $\bigcup_{f \in \mathcal{P}'} f(B) = \overline{X \setminus B}$ and $f|_{\overline{X \setminus B}} = const$ for every $f \in \mathcal{P}'$ (*2) $\exists \mathcal{F}'$ finite family of Lipschitz on *B*, continuous $X \to B$ s.t. a) $\bigcup_{f \in \mathcal{F}'} f(X) = B$ b) $\operatorname{Lip} f|_B < 1$ for every $f \in \mathcal{F}'$ c) $f|_{\overline{X \setminus B}} = const$ for every $f \in \mathcal{F}'$ X is a topological fractal for topologically contracting system with maps s.t. $f|_{\overline{X \setminus B}} = const$

 $\mathcal{F}' \cup \mathcal{P}'$ is a topologically contractive system on X with maps s.t.

•
$$f|_{\overline{X \setminus B}} = const$$

uniformly continuous

(*1) $\exists \mathcal{P}'$ finite family of continuous maps $X \to \overline{X \setminus B}$ s.t. $\bigcup_{f \in \mathcal{P}'} f(B) = \overline{X \setminus B}$ and $f|_{\overline{X \setminus B}} = const$ for every $f \in \mathcal{P}'$ (*2) $\exists \mathcal{F}'$ finite family of Lipschitz on *B*, continuous $X \to B$ s.t. a) $\bigcup_{f \in \mathcal{F}'} f(X) = B$ b) $\operatorname{Lip} f|_B < 1$ for every $f \in \mathcal{F}'$ c) $f|_{\overline{X \setminus B}} = const$ for every $f \in \mathcal{F}'$ X is a topological fractal for topologically contracting system with maps s.t. $f|_{\overline{X \setminus B}} = const$

 $\mathcal{F}' \cup \mathcal{P}'$ is a topologically contractive system on X with maps s.t.

•
$$f|_{\overline{X \setminus B}} = const$$

• uniformly continuous

For given \mathcal{U} open cover of X take the Lebesgue number $\varepsilon > 0$ of \mathcal{U}

・ロト ・ 四 ト ・ ヨ ト ・

(*1) $\exists \mathcal{P}'$ finite family of continuous maps $X \to X \setminus B$ s.t. $\bigcup_{f\in\mathcal{P}'}f(B)=X\setminus B$ and $f|_{\overline{X\setminus B}}=const$ for every $f\in\mathcal{P}'$ (*2) $\exists \mathcal{F}'$ finite family of Lipschitz on *B*, continuous $X \to B$ s.t. a) $\bigcup_{f \in \mathcal{F}'} f(X) = B$ b) $\operatorname{Lip} f|_B < 1$ for every $f \in \mathcal{F}'$ c) $f|_{\overline{X \setminus B}} = const$ for every $f \in \mathcal{F}'$ X is a topological fractal for topologically contracting system with maps s.t. $f|_{\overline{X \setminus B}} = const$

 $\mathcal{F}' \cup \mathcal{P}'$ is a topologically contractive system on X with maps s.t.

•
$$f|_{\overline{X\setminus B}} = const$$

• uniformly continuous

For given \mathcal{U} open cover of X take the Lebesgue number $\varepsilon > 0$ of \mathcal{U} and $\delta > 0$ such that diam $(Y) < \delta \Rightarrow$ diam $f(Y) < \varepsilon$ for every $f \in \mathcal{F}' \cup \mathcal{P}'$ and $Y \subset X$.

(*1) $\exists \mathcal{P}'$ finite family of continuous maps $X \to \overline{X \setminus B}$ s.t. $\bigcup_{f \in \mathcal{P}'} f(B) = \overline{X \setminus B}$ and $f|_{\overline{X \setminus B}} = const$ for every $f \in \mathcal{P}'$ (*2) $\exists \mathcal{F}'$ finite family of Lipschitz on B, continuous $X \to B$ s.t. a) $\bigcup_{f \in \mathcal{F}'} f(X) = B$ b) $\operatorname{Lip} f|_B < 1$ for every $f \in \mathcal{F}'$ c) $f|_{\overline{X \setminus B}} = const$ for every $f \in \mathcal{F}'$ \Downarrow X is a topological fractal for topologically contracting system with maps s.t. $f|_{\overline{X \setminus B}} = const$

For given \mathcal{U} open cover of X take the Lebesgue number $\varepsilon > 0$ of \mathcal{U} and $\delta > 0$ such that diam $(Y) < \delta \Rightarrow$ diam $f(Y) < \varepsilon$ for every $f \in \mathcal{F}' \cup \mathcal{P}'$ and $Y \subset X$.

・ロト ・ 一日 ト ・ 日 ト ・

(*1) $\exists \mathcal{P}'$ finite family of continuous maps $X \to \overline{X \setminus B}$ s.t. $\bigcup_{f \in \mathcal{P}'} f(B) = \overline{X \setminus B}$ and $f|_{\overline{X \setminus B}} = const$ for every $f \in \mathcal{P}'$ (*2) $\exists \mathcal{F}'$ finite family of Lipschitz on B, continuous $X \to B$ s.t. a) $\bigcup_{f \in \mathcal{F}'} f(X) = B$ b) $\operatorname{Lip} f|_B < 1$ for every $f \in \mathcal{F}'$ c) $f|_{\overline{X \setminus B}} = const$ for every $f \in \mathcal{F}'$ \Downarrow X is a topological fractal for topologically contracting system with maps s.t. $f|_{\overline{X \setminus B}} = const$

For given \mathcal{U} open cover of X take the Lebesgue number $\varepsilon > 0$ of \mathcal{U} and $\delta > 0$ such that diam $(Y) < \delta \Rightarrow$ diam $f(Y) < \varepsilon$ for every $f \in \mathcal{F}' \cup \mathcal{P}'$ and $Y \subset X$. Take $\lambda = \max_{f \in \mathcal{F}'} \operatorname{Lip} f|_B < 1$ and $m \in \mathbb{N}$ s.t. $\lambda^m \operatorname{diam}(B) < \delta$.

・ロト ・ 一日 ト ・ 日 ト ・

(*1) $\exists \mathcal{P}'$ finite family of continuous maps $X \to \overline{X \setminus B}$ s.t. $\bigcup_{f \in \mathcal{P}'} f(B) = \overline{X \setminus B}$ and $f|_{\overline{X \setminus B}} = const$ for every $f \in \mathcal{P}'$ (*2) $\exists \mathcal{F}'$ finite family of Lipschitz on B, continuous $X \to B$ s.t. a) $\bigcup_{f \in \mathcal{F}'} f(X) = B$ b) $\operatorname{Lip} f|_B < 1$ for every $f \in \mathcal{F}'$ c) $f|_{\overline{X \setminus B}} = const$ for every $f \in \mathcal{F}'$ \Downarrow X is a topological fractal for topologically contracting system with maps s.t. $f|_{\overline{X \setminus B}} = const$

For given \mathcal{U} open cover of X take the Lebesgue number $\varepsilon > 0$ of \mathcal{U} and $\delta > 0$ such that diam $(Y) < \delta \Rightarrow$ diam $f(Y) < \varepsilon$ for every $f \in \mathcal{F}' \cup \mathcal{P}'$ and $Y \subset X$. Take $\lambda = \max_{f \in \mathcal{F}'} \operatorname{Lip} f|_B < 1$ and $m \in \mathbb{N}$ s.t. $\lambda^m \operatorname{diam}(B) < \delta$. Then for every $f_1, \ldots, f_{m+2} \in \mathcal{F}' \cup \mathcal{P}'$ the diameter of image $f_1 \circ f_2 \circ \cdots \circ f_{m+2}(X)$ is $< \varepsilon$

(*1) $\exists \mathcal{P}'$ finite family of continuous maps $X \to \overline{X \setminus B}$ s.t. $\bigcup_{f \in \mathcal{P}'} f(B) = \overline{X \setminus B}$ and $f|_{\overline{X \setminus B}} = const$ for every $f \in \mathcal{P}'$ (*2) $\exists \mathcal{F}'$ finite family of Lipschitz on B, continuous $X \to B$ s.t. a) $\bigcup_{f \in \mathcal{F}'} f(X) = B$ b) $\operatorname{Lip} f|_B < 1$ for every $f \in \mathcal{F}'$ c) $f|_{\overline{X \setminus B}} = const$ for every $f \in \mathcal{F}'$ \Downarrow X is a topological fractal for topologically contracting system with maps s.t. $f|_{\overline{X \setminus B}} = const$

For given \mathcal{U} open cover of X take the Lebesgue number $\varepsilon > 0$ of \mathcal{U} and $\delta > 0$ such that diam $(Y) < \delta \Rightarrow$ diam $f(Y) < \varepsilon$ for every $f \in \mathcal{F}' \cup \mathcal{P}'$ and $Y \subset X$. Take $\lambda = \max_{f \in \mathcal{F}'} \operatorname{Lip} f|_B < 1$ and $m \in \mathbb{N}$ s.t. $\lambda^m \operatorname{diam}(B) < \delta$. Then for every $f_1, \ldots, f_{m+2} \in \mathcal{F}' \cup \mathcal{P}'$ the diameter of image $f_1 \circ f_2 \circ \cdots \circ f_{m+2}(X)$ is $< \varepsilon$ so it lies in some set from \mathcal{U} .

Corollary

If for compact metric space X for every open subset U there exists a $B \subset U$ self-similar brick satisfies (***) or (**) or (*1,*2) then X is a topological superfractal.

$$f|_{\overline{X \setminus B}} = const \quad \Rightarrow \quad f|_{\overline{X \setminus U}} = const$$

▲御▶ ▲ 臣▶ ▲ 臣▶

(***) $\exists \varphi \colon X \to B$ Lipschitz on *B*, cont. surjection, $\varphi|_{\overline{X \setminus B}} = const$

- Cantor set
- Ø Koch curve
- Sierpiński triangle
- Sierpiński carpet

(日本) (日本) (日本)

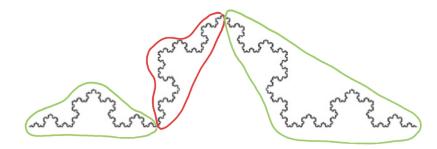
(***)
$$\exists \varphi \colon X \to B$$
 Lipschitz on B , cont. surjection, $\varphi|_{\overline{X \setminus B}} = const$
• Cantor set

|--|

・ 同 ト ・ ヨ ト ・ ヨ ト

- Ø Koch curve
- Sierpiński triangle
- Sierpiński carpet

- (***) $\exists \varphi \colon X \to B$ Lipschitz on *B*, cont. surjection, $\varphi|_{\overline{X \setminus B}} = const$
 - Cantor set
 - Ø Koch curve



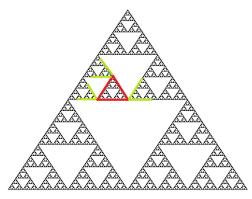
- Sierpiński triangle
- Sierpiński carpet

Magdalena Nowak

Superfractals among classical self-similar sets

(***) $\exists \varphi \colon X \to B$ Lipschitz on *B*, cont. surjection, $\varphi|_{\overline{X \setminus B}} = const$

- Cantor set
- Ø Koch curve
- Sierpiński triangle



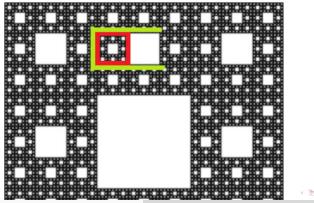
Sierpiński carpet

Magdalena Nowak

Superfractals among classical self-similar sets

(***) $\exists \varphi \colon X \to B$ Lipschitz on *B*, cont. surjection, $\varphi|_{\overline{X \setminus B}} = const$

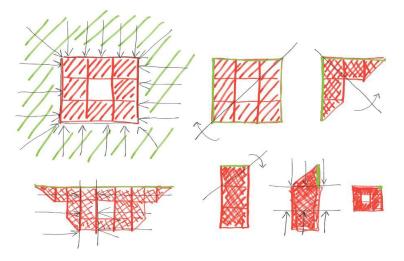
- Cantor set
- Ø Koch curve
- Sierpiński triangle
- Sierpiński carpet



Magdalena Nowak

Superfractals among classical self-similar sets

(***) $\exists \varphi \colon X \to B$ Lipschitz on *B*, cont. surjection, $\varphi|_{\overline{X \setminus B}} = const$ Sierpiński carpet



(***) $\exists \varphi \colon X \to B$ Lipschitz on B, cont. surjection, $\varphi|_{\overline{X \setminus B}} = const$ Peano continuum

イロト イポト イヨト イヨト 二日

X ∪ Y where X, Y are disjoint sets with respectively finite and infinite cardinality
 [0, 1] ∪ {2}, {1/n}_{n∈ℕ}

・ 戸 ト ・ ヨ ト ・ ヨ ト

- X ∪ Y where X, Y are disjoint sets with respectively finite and infinite cardinality
 [0, 1] ∪ {2}, {1/n}_{n∈ℕ}
- X ∪ Y where X, Y are disjoint sets with respectively finite and infinite connected components
 I ∪ C, {1/n}_{n∈ℕ}

・ロト ・ 一日 ト ・ 日 ト ・

Problems

What is the role of

- Open Set Condition
- Lipschitz extensors

for being a topological superfractal?

・ 同 ト ・ ヨ ト ・ ヨ ト

Problems

What is the role of

- Open Set Condition
- Lipschitz extensors

for being a topological superfractal?

 $[0,1]\cup\{2\}$ - has OSC but is not a top. superfractal

・ 同下 ・ ヨト ・ ヨト

THANK YOU

Magdalena Nowak Superfractals among classical self-similar sets

イロト イヨト イヨト イヨト 二日