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The escaping set of transcendental entire functions

The escaping set of a transcendental entire function f ,

I (f ) := {z ∈ C : f n(z)→∞ as n→∞}

was introduced by Eremenko in 1989.

Theorem (Eremenko, 1989)
Let f be a transcendental entire function. Then,

I1. I (f ) ∩ J(f ) 6= ∅;
I2. J(f ) = ∂I (f );

I3. all the components of I (f ) are unbounded.

I Eremenko’s conjecture: all the components of I (f ) are unbounded.

I Strong Eremenko’s conjecture: every escaping point can be joined with ∞ by a
curve in I (f ).

[Ere89] A. Eremenko, On the iteration of entire functions, Dynamical Systems and Ergodic Theory, Banach Center
Publ. 23 (1989), 339-345.



R3S

In [R3S11], a partial positive answer to the strong Eremenko’s conjecture was given:

Theorem (Rottenfußer, Ruckert, Rempe and Schleicher, 2011)
Let f ∈ B be a function of finite order, or more generally a finite composition of such
functions. Then every point z ∈ I (f ) can be connected to ∞ by a curve γ such that
f n|γ →∞ uniformly.

But they also constructed a counterexample to the strong Eremenko’s conjecture:

Theorem (Rottenfußer, Ruckert, Rempe and Schleicher, 2011)
There exists a hyperbolic entire function f ∈ B such that every path-connected
component of J(f ) is bounded.

Note that this is not a counterexample to Eremenko’s conjecture, which is still open.

[R3S11] G. Rottenfußer, J. Ruckert, L. Rempe, and D. Schleicher, Dynamic rays of bounded-type entire functions,
Ann. of Math. (2) 173 (2011), no. 1, 77–125.



The fast escaping set of transcendental entire functions

Let f be an entire function and, for r > 0, define

M(r) := max
|z|=r

|f (z)|.

Let R > 0 be sufficiently large so that Mn(R)→ +∞ as n→∞. We say that z ∈ A(f )
if there exists ` ∈ N such that

|f n+`(z)| > Mn(R), for all n ∈ N.

The set A(f ) is called the fast escaping set of f and is non-empty.

Theorem (Rippon and Stallard, 2005)
Let f be a transcendental entire function. The components of A(f ) are all unbounded.

Corollary (Rippon and Stallard, 2005)
The escaping set I (f ) has at least one unbounded component.

[BH99] W. Bergweiler and A. Hinkkanen, On semiconjugation of entire functions, Math. Proc. Cambridge Philos.
Soc. 126 (1999), no. 3, 565–574.
[RS12] P. Rippon and G. Stallard, Fast escaping points of entire functions, Proc. London Math. Soc. (3) 105 (2012)
787–820.



Spider’s web

One situation in which Eremenko’s conjecture holds, is when I (f ) is connected. To study
this, Rippon and Stallard introduced the notion of a spider’s web:

We say that a set E ⊆ C is a spider’s web if E is connected, and there exists a sequence
{Gn}n∈N of bounded, simply connected domains such that

I ∂Gn ⊆ E for all n ∈ N;
I Gn ⊆ Gn+1 for all n ∈ N;
I
⋃

n∈N Gn = C.

Theorem (Rippon and Stallard, 2005)
If f is a trancendental entire function with a multiply connected Fatou component,
then both A(f ) and I (f ) are a spider’s web.

Although it was proved before, this follows directly from the next result using the level
sets AR(f ) of the fast escaping set A(f ).

[RS05] P. Rippon and G. Stallard, On questions of Fatou and Eremenko, Proc. Amer. Math.Soc. 133 (2005) 1119–
1126.
[RS12] P. Rippon and G. Stallard, Fast escaping points of entire functions, Proc. London Math. Soc. (3) 105 (2012)
787–820.



Level sets AR(f )

Let f be a transcendental entire function and choose R > 0 be sufficiently large that
Mn(R)→ +∞ as n→∞. We define a level set of A(f ) by

AR(f ) := {z ∈ C : |f n(z)| > Mn(R) for all n > 0},

and then
A(f ) =

⋃
`>0

f −`(AR(f )).

Theorem (Rippon and Stallard, 2009)
Let f be a transcendental entire function and let R > 0 be such that M(r , f ) > r for
r > R. If AR(f )c has a bounded component, then each of AR(f ), A(f ) and I (f ) is a
spider’s web.

There are no examples for which A(f ) is a spider’s web but AR(f ) is not a spider’s web.

[RS09] P. Rippon and G. Stallard, Escaping points of entire functions of small growth, Math. Z. 261 (2009) 557–570.
[RS12] P. Rippon and G. Stallard, Fast escaping points of entire functions, Proc. London Math. Soc. (3) 105 (2012)
787–820.



First example

For the transcendental entire function

f (z) = 1
2

(
cos z1/4 + cosh z1/4),

the level set AR(f ) (and hence A(f ) and I (f )) is a spider’s web.

(picture by Dr. Dominique Fleischmann)

[RS09] P. Rippon and G. Stallard, Escaping points of entire functions of small growth, Math. Z. 261 (2009) 557–570.



Classes of functions for which AR(f ) is a spider’s web

Theorem (Rippon and Stallard, 2012)
Let f be a transcendental entire function and let R > 0 be such that M(r , f ) > r for
r > R. Then AR(f ) is a spider’s web if one of the following holds:

1. f has a multiply connected Fatou component;

2. f has very small growth;

3. f has order less than 1/2 and regular growth;

4. f has finite order, Fabry gaps and regular growth;

5. f has a sufficiently stong version of the pits effect and has regular growth.

I Mihaljević-Brand and Peter proved that the Poincaré function (or linearizer) of
some polynomials at a repelling fixed point has an AR(f ) spider’s web;

I Sixsmith gave other ways to construct functions with an AR(f ) spider’s web,
some of which are preserved by composition, differentiation and integration.

[MP12] H. Mihaljević-Brandt and J. Peter, Poincaré functions with spiders’ webs, Proc. Amer. Math. Soc. 140
(2012), no. 9, 3193–3205.
[RS12] P. Rippon and G. Stallard, Fast escaping points of entire functions, Proc. London Math. Soc. (3) 105 (2012)
787–820.
[Six11] D. J. Sixsmith, Entire functions for which the escaping set is a spider’s web, Math. Proc. Cambridge Philos.
Soc. 151 (2011), no. 3, 551–571.



Properties of functions with an AR(f ) spider’s web

Theorem (Rippon and Stallard, 2012)
Let f be a transcendental entire function and let R > 0 be such that M(r , f ) > r for
r > R. Suppose that AR(f ) is a spider’s web, then:

1. if f has no multiply connected Fatou component, then AR(f )∩ J(f ), A(f )∩ J(f ),
I (f ) ∩ J(f ) and J(f ) are spiders’ webs;

2. the function f has no unbounded Fatou components;

3. all the components of A(f )c are compact, and if K is such a component, then
either K ∩ I (f ) = ∅ or all points in K escape to ∞ uniformly;

4. every point of J(f ) is the limit of a sequence of points, each of which lies in a
distinc component of A(f )c ;

5. each point in I (f ) belongs to an unbounded continuum in I (f ) on which all
points escape to ∞ uniformly;

6. there is no path to ∞ on which f is bounded and so
6.1 f does not belong to the class B;

6.2 f has no exceptional points (that is, points with a finite backward orbit).

[RS12] P. Rippon and G. Stallard, Fast escaping points of entire functions, Proc. London Math. Soc. (3) 105 (2012)
787–820.



Can I (f ) be a SW when A(f ) is not?

Yes. The first example was given by Rippon and Stallard. Let m(r) := min|z|=r |f (z)|.

Theorem (Rippon and Stallard, 2013)
Let f be a transcendental entire function of the form

f (z) = czp0
∞∏
n=1

(
1 +

z

an

)pn

,

where c ∈ R \ {0}, pn ∈ N ∪ {0}, for n > 0, and the sequence (an) is positive and
strictly increasing. In addition, suppose that there exist m > 1 and R0 > 0 such that,
for all r > R0, there exists ρ ∈ (r , rm) with m(ρ) > M(r). Then

(a) there are no unbounded components of F (f );

(b) the set I (f ) is a spider’s web, and hence is connected;

(c) if, in addition, f has no multiply connected Fatou components, then J(f ) and
I (f ) ∩ J(f ) are both spiders’ webs.

It follows from another result of Rippon and Stallard that there are functions that satisfy
the assumptions of this theorem for which AR(f ) and A(f ) are not a spider’s web.

[RS13a] P. J. Rippon and G. S. Stallard, Baker’s conjecture and Eremenko’s conjecture for functons with negative
zeros, J. Anal. Math. 120 (2013) 291–309.
[RS13b] P. J. Rippon and G. M. Stallard, A sharp growth condition for a fast escaping spider’s web, Adv. Math, 244
(2013), 337–353. [19]



Fatou’s web

Theorem (Evdoridou, 2016)
The escaping set of Fatou’s function

f (z) = z − 1 + e−z

is a spider’s web.

[Evd16] V. Evdoridou, Fatou’s web, Proc. Amer. Math. Soc. 144 (2016), no. 12, 5227–5240.



Fatou’s web

For Fatou’s function,
I J(f ) is a Cantor bouquet (an uncountable union of curves);
I F (f ) is a completely invariant Baker domain;
I A(f ) consists of the curves in the Cantor bouquet, without some of its endpoints;
I I (f ) consists of all C except for some of the endpoints of the Cantor bouquet.

Observe that neither AR(f ) nor A(f ) can be spiders’ webs.

Strategy of the proof: show that the set

I (f , (an)) := {z ∈ C : |f n(z)| > an for all n ∈ N} ⊆ I (f )

is a spider’s web, where an = (n+m)/2 for n ∈ N (m ∈ N is arbitrary). Then, it follows
from the next result from Rippon and Stallard that I (f ) is a spider’s web.

Theorem (Rippon and Stallard, 2013)
Let f be a transcendental entire function. If I (f ) contains a spider’s web, then I (f ) is
a spider’s web. The same holds for J(f ) and I (f ) ∩ J(f ).

[Evd16] V. Evdoridou, Fatou’s web, Proc. Amer. Math. Soc. 144 (2016), no. 12, 5227–5240.
[RS13a] P. J. Rippon and G. S. Stallard, Baker’s conjecture and Eremenko’s conjecture for functons with negative
zeros, J. Anal. Math. 120 (2013) 291–309.



Generalisation to disjoint-type maps

We say that a transcendental entire function f is of disjoint type if it is hyperbolic and
F (f ) is connected.

For disjoint type functions,
I J(f ) is a Cantor bouquet (an uncountable union of curves);
I F (f ) is a completely invariant basin of attraction;
I A(f ) consists of the curves in the Cantor bouquet, without some of its endpoints;
I F (f ) ∪ A(f ) consists of all C except for some of the endpoints of the Cantor

bouquet.

Theorem (Evdoridou and Sixsmith, 2019)
Let f be a disjoint-type function that is of finite order or can be written as a finite
composition of finite order functions in the class B. Then F (f )∪A(f ) is a spider’s web.

[ES19] V. Evdoridou and D. J. Sixsmith, The topology of the set of non-escaping endpoints, to appear in International
Mathematics Research Notices, arXiv:1802.02738v1, 2019.



J(f ) spiders’ webs

Theorem (Osborne, 2013)
Let f be a transcendental entire function such that J(f ) is locally connected. Then
J(f ) is a spider’s web.

An immediate corollary (after the previous results of Rippon and Stallard) is that:

Corollary (Osborne, 2013)
Let f be a transcendental entire function with an unbounded Fatou component. Then
J(f ) is not locally connected.

Example (Osborne, 2013)
Let f (z) = sin z. Then J(f ) is a spider’s web, but I (f ) is not.

[Osb13] J. W. Osborne, Spiders’ webs and locally connected Julia sets of transcendental entire functions, Ergod.
Th. & Dynam. Sys. 33 (2013), no. 4, 1146–1161.



Transcendental self-maps of C∗

A transcendental self-map of C∗ is a holomorphic function f : C∗ → C∗ for which
both 0 and ∞ are essential singularities.

We define the escaping set of such map as

I (f ) := {z ∈ C∗ : ω(z, f ) ⊆ {0,∞}},

where ω(z, f ) :=
⋂

n∈N {f k (z) : k > n} and the closure is taken in Ĉ.

Theorem (Martí-Pete, 2018)
Let f be a transcendental self-map of C∗. Then
(i) I (f ) ∩ J(f ) 6= ∅;
(ii) J(f ) = ∂I (f );

(iii) all the components of I (f ) are unbounded.

Recall that we say that a set X ⊆ C∗ is bounded in C∗ if its closure in Ĉ does not
meet {0,∞}. Otherwise X is said to be unbounded in C∗.

[Mar18] D. Martí-Pete, The escaping set of transcendental self-maps of the punctured plane, Ergod. Th. & Dynam.
Sys. 38 (2018), no. 2, 739–760.



Spiders’ webs in C∗

We say that a set E ⊆ C∗ is a C∗-spider’s web if E is connected and there exists a
sequence of domains {Gn}n∈N, each of which is bounded in C∗, such that

(a) for each n ∈ N, the set Ĉ \ Gn has exactly two components, one containing ∞
and one containing 0;

(b) Gn ⊆ Gn+1 and ∂Gn ⊆ E , for n ∈ N;
(c)

⋃
n∈N Gn = C∗.

[EMS19] V. Evdoridou, D. Martí-Pete and D. J. Sixsmith, Spiders’ webs in the punctured plane, preprint,
arXiv:1901.05276, 2019.



Topological characterisation of a spider’s web

If E ,X ,Y ⊆ Ĉ, then we say that E separates Y from X if there exists an open set U
containing Y such that the closure of U in Ĉ does not meet X , and such that ∂U ⊆ E .

If Y = {z}, then we say that E separates z from X .

Theorem (Evdoridou and Rempe-Gillen, 2018)
Let E ⊆ C be connected. Then E is a spider’s web if and only if E separates every
finite point z ∈ C from ∞.

Theorem (Evdoridou, Martí-Pete and Sixsmith, 2019)
Let E ⊆ C∗ be connected. Then E is a C∗-spider’s web if and only if it separates each
point of C∗ from {0,∞}.

[EMS19] V. Evdoridou, D. Martí-Pete and D. J. Sixsmith, Spiders’ webs in the punctured plane, preprint,
arXiv:1901.05276, 2019.
[ER18] V. Evdoridou and L. Rempe-Gillen, Non-escaping endpoints do not explode, Bull. Lond. Math. Soc. 50 (2018),
no. 5, 916–932.



Dynamical characterisation of a spider’s web

Theorem (Sixsmith, 2018)
Suppose that f is a transcendental entire function. Then I (f ) (respectively A(f )) is a
spider’s web if and only if it separates some point of J(f ) from infinity. If f has no
multiply connected Fatou components, then J(f ) is a spider’s web if and only if it
separates some point of J(f ) from infinity.

Theorem (Evdoridou, Martí-Pete and Sixsmith, 2019)
Suppose that f is a transcendental self-map of C∗. Then I (f ) is a C∗-spider’s web if
and only if it separates some point of J(f ) from {0,∞}. This statement is also true if
we replace I (f ) with either A(f ) or J(f ).

Note that to prove this result, we show that:
I as for transcendental entire functions, if I (f ) contains a C∗-spider’s web, then

I (f ) is a C∗-spider’s web;
I suppose that X ⊆ C∗ is forward invariant, then X contains a C∗-spider’s web if

and only if X separates some point of J(f ) from {0,∞}.
This last result is based on the blowing-up property.

[EMS19] V. Evdoridou, D. Martí-Pete and D. J. Sixsmith, Spiders’ webs in the punctured plane, preprint,
arXiv:1901.05276, 2019.
[Six18] D. J. Sixsmith, Dynamical sets whose union with infinity is connected, to appear in Ergod. Th. & Dynam.
Sys. (published online on 2018).



Lifts

Given a holomorphic self-map of C∗, there exists an entire function f̃ such that the
following diagram commutes:

C f̃ //

exp

��

C

exp

��
C∗

f
// C∗

We call f̃ a lift of f , and is unique up to addition of integer multiples of 2πi .

Theorem (Bergweiler, 1995)
Let f be a holomorphic self-map of C∗ and let f̃ be a lift of f . Then we have
J(f̃ ) = exp−1(J(f )).

Observe that exp−1 I (f ) ⊆ I (f̃ ), but we do not have equality.

Theorem (Evdoridou, Martí-Pete and Sixsmith, 2019)
If E is a spider’s web, then E ′ := exp(E) is a C∗-spider’s web. Similarly, if E ′ is a
C∗-spider’s web, then E := exp−1(E ′) is a spider’s web.

[Ber95] W. Bergweiler, On the Julia set of analytic self-maps of the punctured plane, Analysis 15 (1995), no. 3,
251–256.
[EMS19] V. Evdoridou, D. Martí-Pete and D. J. Sixsmith, Spiders’ webs in the punctured plane, preprint,
arXiv:1901.05276, 2019.



J(f ) spiders’ webs in C∗

The transcendental entire functtion f̃ (z) = sin z is a lift of the transcendental self-map
of C∗ given by

f (z) = exp
(
1
2

(
z −

1
z

))
and therefore:

I since Osborne proved that J(f̃ ) is a spider’s web,
I by Bergweiler’s result, J(f ) = exp(J(f̃ )),
I and our previous theorem implies that J(f ) is a spider’s web.

Note that C∗ \ J(f ) 6= ∅.

[Ber95] W. Bergweiler, On the Julia set of analytic self-maps of the punctured plane, Analysis 15 (1995), no. 3,
251–256.
[EMS19] V. Evdoridou, D. Martí-Pete and D. J. Sixsmith, Spiders’ webs in the punctured plane, preprint,
arXiv:1901.05276, 2019.
[Osb13] J. W. Osborne, Spiders’ webs and locally connected Julia sets of transcendental entire functions, Ergod.
Th. & Dynam. Sys. 33 (2013), no. 4, 1146–1161.



Example of a Baker domain in C∗

Theorem (Martí-Pete, 2019)
For λ > 2, the function f (z) := λz exp(e−z/z) is a transcendental self-map of C∗
with a Baker domain containing the right half-plane H := {z ∈ C : Re z > 2}.

[Mar19] D. Martí-Pete, Escaping Fatou components of transcendental self-maps of the punctured plane, to appear
in Math. Proc. Camb. Phil. Soc., arXiv:1801.00124, 2019.



Main theorem

Theorem
There exists λ0 > 2 such that if λ > λ0, the transcendental self-map of C∗ given by

f (z) := λz exp(e−z/z)

has the property thtat I (f ) is a C∗-spider’s web.

[EMS19] V. Evdoridou, D. Martí-Pete and D. J. Sixsmith, Spiders’ webs in the punctured plane, preprint,
arXiv:1901.05276, 2019.



Sketch of the proof I

Strategy of the proof: we show that all the complementary components of the closed
set

I := {z ∈ C∗ : for all n ∈ N, either |f n(z)| > n/2, or |f n(z)| 6 n/2, or f n+2(z) ∈ H},

which is a subset of I (f ), are bounded in C∗. Here H is the absorbing half-plane

H := {z ∈ C : Re z > 2}

in the Baker domain of f .

Observe that this implies our result: Pick a repelling periodic point z of f and let
W be the complementary component of the closed set I containing z. Then W is a
bounded domain that intersects J(f ) such that ∂W ⊆ I ⊆ I (f ). Thus, we can apply
our dynamical characterisation of C∗-spiders’ webs and we are done.



Sketch of the proof II

The proof that all the components of C∗ \ I are bounded in C∗ is by contradiction:

I Suppose that X is a component of C∗ \ I that is unbounded in C∗.

I Since X is open, let Γ1 be a long curve contained in X .

I Note that if z ∈ C∗ \ I and k ∈ N are such that |f n(z)| > n/2 or |f n(z)| 6 2/n
for all 0 < n < k, then f k (z) /∈ f −2(H).

I By studying the set f −2(H), we deduce that Γ1 contains a possibly slightly
shorter curve Γ′1 such that it is entirely contained in one of the sets where |f | is
very large or very small.

I We then conclude that Γ2 = f (Γ′1) is again a long curve that does not meet
f −2(H).

I Iterating this process, we obtain a point in Γ1 that lies in I , which is a
contradiction.



The set f −2(H)



The set f −2(H) (near the origin)



The paces where |f | is very large or very small



What about AR(f ) or A(f ) spider’s webs in C∗?

One can also define an analogue of the sets AR(f ) and A(f ) in C∗ by combining the
iterates of the minimum and maximum modulus functions (see [Mar18, Definition 1.2]).

For our function, I (f ) is a spider’s web but A(f ) is not (because of the Baker domain).

It is easy to see that AR(f ) can never be a spider’s web in C∗. Indeed, on every loop
that is close to 0 or to ∞ the function needs to be at the same time very small and
very big (as both 0 and ∞ are asymptotic values). So we necessarily have points whose
next image is not too big nor too small, and so are not in AR(f ).
Since all examples of transcendental entire functions for which A(f ) is a spider’s web
have been constructed using that the set AR(f ) is a spider’s web, we pose the following
conjecture.

Conjecture (Evdoridou, Martí-Pete and Sixsmith)
Lett f be a transcendental self-map of C∗. Then A(f ) is not a spider’s web.

[EMS19] V. Evdoridou, D. Martí-Pete and D. J. Sixsmith, Spiders’ webs in the punctured plane, preprint,
arXiv:1901.05276, 2019.



Wszystkiego Najlepszego
Prof. Michał Misiurewicz!


