On Möbius disjointness conjecture

Mariusz Lemańczyk

Nicolaus Copernicus University, Toruń

Celebrating M. Misiurewicz 70th birthday, Kraków, 13.06.2019

The Möbius function and its square

$$n = p_1^{\alpha_1} \cdot \ldots \cdot p_k^{\alpha_k},$$
 $\mu(n) = (-1)^k \text{ if } \alpha_1 = \ldots = \alpha_k = 1 \text{ and } \mu(n) = 0 \text{ otherwise}$
 $(\mu(1) = 1),$

•
$$\mu(mn) = \mu(m)\mu(n)$$
 whenever $(m, n) = 1$ (μ is multiplicative but not completely multiplicative),

•
$$\mu^2 = \mathbb{1}_{\mathscr{S}}$$
, where $\mathscr{S} := \{n \in \mathbb{N} : \text{ no square divides } n\}$.

<u>Remark:</u> In what follows, often, sequences will be considered over \mathbb{Z} , for example $\mu(-n)=\mu(n)$, etc.

The Möbius function and its square

- $\mu(mn) = \mu(m)\mu(n)$ whenever (m, n) = 1 (μ is multiplicative but not completely multiplicative),
- $\mu^2 = \mathbb{1}_{\mathscr{S}}$, where $\mathscr{S} := \{n \in \mathbb{N} : \text{ no square divides } n\}$.

<u>Remark:</u> In what follows, often, sequences will be considered over \mathbb{Z} , for example $\mu(-n) = \mu(n)$, etc.

Theorem (Landau, 1906)

 $M(\mu) := \lim_{N \to \infty} \frac{1}{N} \sum_{n \leqslant N} \mu(n) = 0$ if and only if PNT holds.

<u>Recall</u>: PNT: $|\{p \leq N : p \text{ is prime}\}| \sim \frac{N}{\log N}$.

<u>Recall</u> Riemann Hypothesis is equivalent to $\sum_{n \leq N} \mu(n) = O(N^{\frac{1}{2} + \varepsilon})$ (for all $\varepsilon > 0$).

Theorem (Landau, 1906)

 $M(\mu) := \lim_{N \to \infty} \frac{1}{N} \sum_{n \leqslant N} \mu(n) = 0$ if and only if PNT holds.

<u>Recall</u>: PNT: $|\{p \leq N : p \text{ is prime}\}| \sim \frac{N}{\log N}$.

<u>Recall</u> Riemann Hypothesis is equivalent to $\sum_{n \leq N} \mu(n) = O(N^{\frac{1}{2} + \varepsilon})$ (for all $\varepsilon > 0$).

Theorem (Landau, 1906)

 $M(\mu) := \lim_{N \to \infty} \frac{1}{N} \sum_{n \leqslant N} \mu(n) = 0$ if and only if PNT holds.

Recall: PNT:
$$|\{p \leq N : p \text{ is prime}\}| \sim \frac{N}{\log N}$$
.

<u>Recall</u> Riemann Hypothesis is equivalent to $\sum_{n \leq N} \mu(n) = O(N^{\frac{1}{2} + \varepsilon})$ (for all $\varepsilon > 0$). 1

Chowla conjecture on correlations of the Möbius function (Chowla, 1965)

$$\frac{1}{N}\sum_{n\leqslant N}\mu^{s_0}(n)\cdot\mu^{s_1}(n+a_1)\cdot\ldots\cdot\mu^{s_r}(n+a_r)\to 0$$

for all $r \ge 0$, $1 \le a_1 < a_2 < \ldots < a_r$ and $s_j \in \{1, 2\}$, not all s_0, s_1, \ldots, s_r equal 2.

- (X_{μ}, S) , the Möbius subshift $(X_{\mu} \subset \{-1, 0, 1\}^{\mathbb{Z}})$, (X_{μ^2}, S) the square-free subshift $((X_{\mu^2}, S) \subset \{0, 1\}^{\mathbb{Z}})$.
- (X_{μ²}, S) is a topological factor of (X_μ, S) (by squaring coordinatewise).
- $\frac{1}{N} \sum_{n \leq N} \mu^2(n) \cdot \mu^2(n+a_1) \cdot \ldots \cdot \mu^2(n+a_r) \to \alpha(a_1,\ldots,a_r)$ (Mirsky, 1949).
- lacksquare $oldsymbol{\mu}^2$ is generic for the Mirsky measure $u_{oldsymbol{\mu}^2}$.
- For $heta(x)=x_0$ on $X_\mu\subset\{-1,0,1\}^{\mathbb{Z}}$ we have

$$\frac{1}{N}\sum_{n\leqslant N}\boldsymbol{\mu}(n)\boldsymbol{\mu}(n+a_1)\ldots\boldsymbol{\mu}(n+a_r)=\frac{1}{N}\sum_{n\leqslant N}(\theta\theta\circ S^{a_1}\ldots\theta\circ S^{a_r})(S^n\boldsymbol{\mu}).$$

θ · θ ∘ S^{a₁} · . . . · θ ∘ S^{a_r} ∈ C(X_μ), μ ∈ X_μ.
 μ is a generic point for ν̂_{μ²} (Sarnak, 2010).

- (X_{μ}, S) , the Möbius subshift $(X_{\mu} \subset \{-1, 0, 1\}^{\mathbb{Z}})$, (X_{μ^2}, S) the square-free subshift $((X_{\mu^2}, S) \subset \{0, 1\}^{\mathbb{Z}})$.
- (X_{μ²}, S) is a topological factor of (X_μ, S) (by squaring coordinatewise).
- $\frac{1}{N} \sum_{n \leq N} \mu^2(n) \cdot \mu^2(n+a_1) \cdot \ldots \cdot \mu^2(n+a_r) \to \alpha(a_1,\ldots,a_r)$ (Mirsky, 1949).
- lacksquare $oldsymbol{\mu}^2$ is generic for the Mirsky measure $u_{oldsymbol{\mu}^2}.$
- For $heta(x)=x_0$ on $X_\mu\subset\{-1,0,1\}^{\mathbb{Z}}$ we have

$$\frac{1}{N}\sum_{n\leqslant N}\mu(n)\mu(n+a_1)\ldots\mu(n+a_r)=\frac{1}{N}\sum_{n\leqslant N}(\theta\theta\circ S^{a_1}\ldots\theta\circ S^{a_r})(S^n\mu).$$

 $\theta \cdot \theta \circ S^{a_1} \cdot \ldots \cdot \theta \circ S^{a_r} \in C(X_{\mu}), \ \mu \in X_{\mu}.$ $\mu \text{ is a generic point for } \widehat{\nu}_{\mu^2} \text{ (Sarnak, 2010).}$

- (X_{μ}, S) , the Möbius subshift $(X_{\mu} \subset \{-1, 0, 1\}^{\mathbb{Z}})$, (X_{μ^2}, S) the square-free subshift $((X_{\mu^2}, S) \subset \{0, 1\}^{\mathbb{Z}})$.
- (X_{μ²}, S) is a topological factor of (X_μ, S) (by squaring coordinatewise).
- $\frac{1}{N} \sum_{n \leq N} \mu^2(n) \cdot \mu^2(n+a_1) \cdot \ldots \cdot \mu^2(n+a_r) \to \alpha(a_1,\ldots,a_r)$ (Mirsky, 1949).

lacksquare $oldsymbol{\mu}^2$ is generic for the Mirsky measure $u_{oldsymbol{\mu}^2}.$

For
$$heta(x)=x_0$$
 on $X_\mu\subset\{-1,0,1\}^{\mathbb{Z}}$ we have

$$\frac{1}{N}\sum_{n\leqslant N}\mu(n)\mu(n+a_1)\ldots\mu(n+a_r)=\frac{1}{N}\sum_{n\leqslant N}(\theta\theta\circ S^{a_1}\ldots\theta\circ S^{a_r})(S^n\mu).$$

 $\theta \cdot \theta \circ S^{a_1} \cdot \ldots \cdot \theta \circ S^{a_r} \in C(X_{\mu}), \ \mu \in X_{\mu}.$ $\mu \text{ is a generic point for } \widehat{\nu}_{\mu^2} \text{ (Sarnak, 2010).}$

- (X_{μ}, S) , the Möbius subshift $(X_{\mu} \subset \{-1, 0, 1\}^{\mathbb{Z}})$, (X_{μ^2}, S) the square-free subshift $((X_{\mu^2}, S) \subset \{0, 1\}^{\mathbb{Z}})$.
- (X_{μ²}, S) is a topological factor of (X_μ, S) (by squaring coordinatewise).
- $\frac{1}{N} \sum_{n \leq N} \mu^2(n) \cdot \mu^2(n+a_1) \cdot \ldots \cdot \mu^2(n+a_r) \to \alpha(a_1,\ldots,a_r)$ (Mirsky, 1949).
- μ^2 is generic for the Mirsky measure ν_{μ^2} .
- For $heta(x)=x_0$ on $X_\mu\subset\{-1,0,1\}^{\mathbb{Z}}$ we have

$$\frac{1}{N}\sum_{n\leqslant N}\mu(n)\mu(n+a_1)\ldots\mu(n+a_r)=\frac{1}{N}\sum_{n\leqslant N}(\theta\theta\circ S^{a_1}\ldots\theta\circ S^{a_r})(S^n\mu).$$

- $\theta \cdot \theta \circ S^{a_1} \cdot \ldots \cdot \theta \circ S^{a_r} \in C(X_{\mu}), \ \mu \in X_{\mu}.$
- $oldsymbol{\mu}$ is a generic point for $\widehat{
 u}_{oldsymbol{\mu}^2}$ (Sarnak, 2010).

- (X_{μ}, S) , the Möbius subshift $(X_{\mu} \subset \{-1, 0, 1\}^{\mathbb{Z}})$, (X_{μ^2}, S) the square-free subshift $((X_{\mu^2}, S) \subset \{0, 1\}^{\mathbb{Z}})$.
- (X_{μ²}, S) is a topological factor of (X_μ, S) (by squaring coordinatewise).
- $\frac{1}{N} \sum_{n \leq N} \mu^2(n) \cdot \mu^2(n+a_1) \cdot \ldots \cdot \mu^2(n+a_r) \to \alpha(a_1, \ldots, a_r)$ (Mirsky, 1949).
- μ^2 is generic for the Mirsky measure ν_{μ^2} .
- For $heta(x)=x_0$ on $X_{oldsymbol{\mu}}\subset\{-1,0,1\}^{\mathbb{Z}}$ we have

$$\frac{1}{N}\sum_{n\leqslant N}\mu(n)\mu(n+a_1)\ldots\mu(n+a_r)=\frac{1}{N}\sum_{n\leqslant N}(\theta\theta\circ S^{a_1}\ldots\theta\circ S^{a_r})(S^n\mu).$$

$$\theta \cdot \theta \circ S^{a_1} \cdot \ldots \cdot \theta \circ S^{a_r} \in C(X_{\mu}), \ \mu \in X_{\mu}.$$

$$\mu \text{ is a generic point for } \widehat{\nu}_{\mu^2} \text{ (Sarnak, 2010).}$$

Definition (Möbius disjointness)

Let X be a compact metric space and $T: X \to X$ a homeomorphism of it. One says that (X, T) is *Möbius disjoint* if $\lim_{N\to\infty} \frac{1}{N} \sum_{n \leq N} f(T^n x) \mu(n) = 0$ for all $x \in X$, $f \in C(X)$.

Sarnak's conjecture (2010)

All zero topological entropy dynamical systems (X, T) are Möbius disjoint.

<u>Remark:</u> We will say that Sarnak's conjecture is satisfied for a topological system (X, T) or that the homeomorphism T is Möbius orthogonal.

Definition (Möbius disjointness)

Let X be a compact metric space and $T: X \to X$ a homeomorphism of it. One says that (X, T) is *Möbius disjoint* if $\lim_{N\to\infty} \frac{1}{N} \sum_{n \leq N} f(T^n x) \mu(n) = 0$ for all $x \in X$, $f \in C(X)$.

Sarnak's conjecture (2010)

All zero topological entropy dynamical systems (X, T) are Möbius disjoint.

<u>Remark:</u> We will say that Sarnak's conjecture is satisfied for a topological system (X, T) or that the homeomorphism T is Möbius orthogonal.

Assume that $(X, \mathcal{B}, \mu, \mathcal{T})$ is a measure-theoretic dynamical system.

$$\left\| \frac{1}{N} \sum_{n \leq N} f(T^n x) \mu(n) \right\|_{L^2(X,\mu)} = \left\| \frac{1}{N} \sum_{n \leq N} z^n \mu(n) \right\|_{L^2(\mathbb{S}^1,\sigma_f)};$$

- $\sup_{z \in S^1} \left| \sum_{n \leq N} z^n \mu(n) \right| \leq C_A \frac{N}{\log^A N}$ for some $C_A > 0$ and all $N \geq 2$ (for each A > 0, Davenport 1937);
- L²-version of Möbius disjointness holds always;
- Using Davenport's estimate: Given $f \in L^1(X, \mu)$, for a.e. $x \in X$, we have $\frac{1}{N} \sum_{n \leq N} f(T^n x) \mu(n) \to 0$ (Sarnak 2010).

Answer to the question

$$rac{1}{N}\sum_{n\leqslant N}f(T^nx)\mu(n)
ightarrow 0$$
 for all $f\in C(X)$ and all $x\in X$.

Assume that $(X, \mathcal{B}, \mu, \mathcal{T})$ is a measure-theoretic dynamical system.

$$\left\| \frac{1}{N} \sum_{n \leq N} f(T^n x) \mu(n) \right\|_{L^2(X,\mu)} = \left\| \frac{1}{N} \sum_{n \leq N} z^n \mu(n) \right\|_{L^2(\mathbb{S}^1,\sigma_f)};$$

- $\sup_{z \in S^1} \left| \sum_{n \leq N} z^n \mu(n) \right| \leq C_A \frac{N}{\log^A N}$ for some $C_A > 0$ and all $N \geq 2$ (for each A > 0, Davenport 1937);
- L²-version of Möbius disjointness holds always;
- Using Davenport's estimate: Given $f \in L^1(X, \mu)$, for a.e. $x \in X$, we have $\frac{1}{N} \sum_{n \leq N} f(T^n x) \mu(n) \to 0$ (Sarnak 2010).

Answer to the question

$$rac{1}{N}\sum_{n\leqslant N}f(\mathcal{T}^nx)\mu(n)
ightarrow 0$$
 for all $f\in C(X)$ and all $x\in X$.

Conjectures of Chowla and Sarnak (Sarnak 2010; Tao 2012)

Chowla conjecture \Rightarrow Sarnak's conjecture.

<u>Recall of Sarnak's conjecture</u>: $\frac{1}{N} \sum_{n \leq N} f(T^n x) \mu(n) \to 0$ for each deterministic homeomorphism T (of a compact metric space X) and all $f \in C(X)$ and $x \in X$.

But why ergodic theory?

- $\frac{1}{N}\sum_{n\leqslant N} f(T^n x)\mu(n) = \frac{1}{N}\sum_{n\leqslant N} f(T^n x)\theta(S^n\mu) = \int_{X\times X_{\mu}} (f\otimes\theta)d\left(\frac{1}{N}\sum_{n\leqslant N} \delta_{(T\times S)^n(x,\mu)}\right) (\underline{\text{Notation:}} \ \theta(z) = z(0)$ for $z \in X_{\mu} \subset \{-1, 0, 1\}^{\mathbb{Z}}$,
- $\frac{1}{N_k} \sum_{n \leq N_k} \delta_{(T \times S)^n(x,\mu)} \to \rho$ in the space $M(X \times X_\mu)$,
- ρ is $T \times S$ -invariant; projection of ρ on X_{μ} is equal to $\hat{\nu}_{\mu^2}$ (since μ is a generic point for $\hat{\nu}_{\mu^2}$ UNDER the Chowla conjecture(!)); projection of ρ on X is SOME T-invariant measure κ and $h_{\kappa}(T) = 0$ by the variational principle.

"Joining" prof of the implication "Chowla \Rightarrow Sarnak" (Abdalaoui, Kułaga-Przymus, L., de la Rue, 2013)

 ρ is a *joining* of the dynamical system (X, κ, S) and $(\{-1, 0, 1\}^{\mathbb{Z}}, \hat{\nu}_{\mu^2}, S)$. The latter automorphism has the so called relative Kolmogorov property with respect to the factor $(X_{\mu^2}, \nu_{\mu^2}, S)$ given by the square free numbers and the Mirsky measure ν_{μ^2} . Then one uses some elements of disjointness theory of Furstenberg (relative version).

Logarithmic Chowla conjecture:

$$\frac{1}{\log N}\sum_{n\leqslant N}\frac{\mu^{s_0}(n)\mu^{s_1}(n+a_1)\dots\mu^{s_r}(n+a_r)}{n}\to 0$$

for all $r \ge 0$, $1 \le a_1 < \ldots < a_r$ and $s_j \in \{1,2\}$, not all s_0, \ldots, s_r równe 2.

- Logarithmic Sarnak's conjecture: $\frac{1}{\log N} \sum_{n \leq N} \frac{t(T'x)\mu(n)}{n} \to 0$ for each deterministic (X, T) and all $f \in C(X)$ and $x \in X$.
- Chowla implies logarithmic Chowla conjecture; Sarnak's conjecture implies logarithmic Sarnak's conjecture.

Theorem (Tao, 2016)

The logarithmic Chowla conjecture holds for correlations of length 2.

Theorem (Tao, Teravainen, 2018)

The logarithmic Chowla conjecture holds for all corellations of ODD length. 13/21

Logarithmic Chowla conjecture:

$$\frac{1}{\log N}\sum_{n\leqslant N}\frac{\mu^{s_0}(n)\mu^{s_1}(n+a_1)\dots\mu^{s_r}(n+a_r)}{n}\to 0$$

for all $r \ge 0$, $1 \le a_1 < \ldots < a_r$ and $s_j \in \{1, 2\}$, not all s_0, \ldots, s_r równe 2.

- Logarithmic Sarnak's conjecture: $\frac{1}{\log N} \sum_{n \leq N} \frac{f(T^n \times)\mu(n)}{n} \to 0$ for each deterministic (X, T) and all $f \in C(X)$ and $x \in X$.
- Chowla implies logarithmic Chowla conjecture; Sarnak's conjecture implies logarithmic Sarnak's conjecture.

Theorem (Tao, 2016)

The logarithmic Chowla conjecture holds for correlations of length 2.

Theorem (Tao, Teravainen, 2018)

The logarithmic Chowla conjecture holds for all corellations of ODD length. 13/21

Logarithmic Chowla conjecture:

$$\frac{1}{\log N}\sum_{n\leqslant N}\frac{\mu^{s_0}(n)\mu^{s_1}(n+a_1)\dots\mu^{s_r}(n+a_r)}{n}\to 0$$

for all $r \ge 0$, $1 \le a_1 < \ldots < a_r$ and $s_j \in \{1, 2\}$, not all s_0, \ldots, s_r równe 2.

- Logarithmic Sarnak's conjecture: $\frac{1}{\log N} \sum_{n \leq N} \frac{f(T^n \times)\mu(n)}{n} \to 0$ for each deterministic (X, T) and all $f \in C(X)$ and $x \in X$.
- Chowla implies logarithmic Chowla conjecture; Sarnak's conjecture implies logarithmic Sarnak's conjecture.

Theorem (Tao, 2016)

The logarithmic Chowla conjecture holds for correlations of length 2.

Theorem (Tao, Teravainen, 2018)

The logarithmic Chowla conjecture holds for all corellations of ODD length. 13/21

Logarithmic Chowla conjecture:

$$\frac{1}{\log N}\sum_{n\leqslant N}\frac{\mu^{s_0}(n)\mu^{s_1}(n+a_1)\dots\mu^{s_r}(n+a_r)}{n}\to 0$$

for all $r \ge 0$, $1 \le a_1 < \ldots < a_r$ and $s_j \in \{1, 2\}$, not all s_0, \ldots, s_r równe 2.

- Logarithmic Sarnak's conjecture: $\frac{1}{\log N} \sum_{n \leq N} \frac{f(T^n \times)\mu(n)}{n} \to 0$ for each deterministic (X, T) and all $f \in C(X)$ and $x \in X$.
- Chowla implies logarithmic Chowla conjecture; Sarnak's conjecture implies logarithmic Sarnak's conjecture.

Theorem (Tao, 2016)

The logarithmic Chowla conjecture holds for correlations of length 2.

Theorem (Tao, Teravainen, 2018)

The logarithmic Chowla conjecture holds for all corellations of ODD length.

Logarithmic Chowla conjecture:

$$\frac{1}{\log N}\sum_{n\leqslant N}\frac{\mu^{s_0}(n)\mu^{s_1}(n+a_1)\dots\mu^{s_r}(n+a_r)}{n}\to 0$$

for all $r \ge 0$, $1 \le a_1 < \ldots < a_r$ and $s_j \in \{1, 2\}$, not all s_0, \ldots, s_r równe 2.

- Logarithmic Sarnak's conjecture: $\frac{1}{\log N} \sum_{n \leq N} \frac{f(T^n \times) \mu(n)}{n} \to 0$ for each deterministic (X, T) and all $f \in C(X)$ and $x \in X$.
- Chowla implies logarithmic Chowla conjecture; Sarnak's conjecture implies logarithmic Sarnak's conjecture.

Theorem (Tao, 2016)

The logarithmic Chowla conjecture holds for correlations of length 2.

Theorem (Tao, Teravainen, 2018)

The logarithmic Chowla conjecture holds for all corellations of ODD length.

Logarithmic Chowla conjecture is EQUIVALENT to logarithmic Sarnak's conjecture.

Corollary (Gomilko, Kwietniak, L., 2017)

- (Tao, 2017) If Sarnak's conjecture holds then Chowla conjecture holds along a subsequence of full logarithmic density.
- A subset of full logarithmic density has (natural) upper density 1.

Logarithmic Chowla conjecture is EQUIVALENT to logarithmic Sarnak's conjecture.

Corollary (Gomilko, Kwietniak, L., 2017)

- (Tao, 2017) If Sarnak's conjecture holds then Chowla conjecture holds along a subsequence of full logarithmic density.
- A subset of full logarithmic density has (natural) upper density 1.

Logarithmic Chowla conjecture is EQUIVALENT to logarithmic Sarnak's conjecture.

Corollary (Gomilko, Kwietniak, L., 2017)

- (Tao, 2017) If Sarnak's conjecture holds then Chowla conjecture holds along a subsequence of full logarithmic density.
- A subset of full logarithmic density has (natural) upper density 1.

Logarithmic Chowla conjecture is EQUIVALENT to logarithmic Sarnak's conjecture.

Corollary (Gomilko, Kwietniak, L., 2017)

- (Tao, 2017) If Sarnak's conjecture holds then Chowla conjecture holds along a subsequence of full logarithmic density.
- A subset of full logarithmic density has (natural) upper density 1.

- μ is aperiodic (classical), that is: $\frac{1}{N} \sum_{n \leq N} \mu(an + b) \rightarrow 0$ for each $a, b \geq 1$. Check that each periodic system is Möbius disjoint; this can be used in a weaker version when a system is "approximated" by periodic systems: Karagulyan for zero entropy interval maps, 2013; subshifts given by regular Toeplitz sequences: El Abdalaoui, Downarowicz, Kasjan, L., 2013.
- Daboussi-Kátai-Bourgain-Sarnak-Ziegler criterion (DKBSZ): $(f_n) \subset \mathbb{C}$ bounded such that $\frac{1}{N} \sum_{n \leq N} f_{pn} \overline{f}_{qn} \to 0$ for each different primes p, q sufficiently large then $\sum_{n \leq N} f_n u(n) \to 0$ for EACH bounded multiplicative $u : \mathbb{N} \to \mathbb{C}$. In the dynamical context (X, T) we use it for $f_n = f(T^n x)$ (Bourgain, Sarnak, Ziegler - Möbius disjointness of horocycle flows, 2013). Take $Tx = x + \alpha$ an irrational rotation, $f(x) = e^{2\pi i k x}$ with $k \neq 0$, and note that:

$$\frac{1}{N}\sum_{n\leqslant N}f(T^{pn}x)\overline{f(T^{qn}x)} = \frac{1}{N}\sum_{n\leqslant N}e^{2\pi ik(x+pn\alpha)}e^{-2\pi ik(x+qn\alpha)} = \frac{1}{N}\sum_{n\leqslant N}e^{2\pi in\left(k(p-q)\alpha\right)} \to 0.$$
15

- μ is aperiodic (classical), that is: $\frac{1}{N} \sum_{n \leqslant N} \mu(an + b) \rightarrow 0$ for each $a, b \ge 1$. Check that each periodic system is Möbius disjoint; this can be used in a weaker version when a system is "approximated" by periodic systems: Karagulyan for zero entropy interval maps, 2013; subshifts given by regular Toeplitz sequences: El Abdalaoui, Downarowicz, Kasjan, L., 2013.
- Daboussi-Kátai-Bourgain-Sarnak-Ziegler criterion (DKBSZ): $(f_n) \subset \mathbb{C}$ bounded such that $\frac{1}{N} \sum_{n \leq N} f_{pn} \overline{f}_{qn} \to 0$ for each different primes p, q sufficiently large then $\sum_{n \leq N} f_n u(n) \to 0$ for EACH bounded multiplicative $u : \mathbb{N} \to \mathbb{C}$. In the dynamical context (X, T) we use it for $f_n = f(T^n x)$ (Bourgain, Sarnak, Ziegler - Möbius disjointness of horocycle flows, 2013). Take $Tx = x + \alpha$ an irrational rotation, $f(x) = e^{2\pi i k x}$ with $k \neq 0$, and note that:

$$\frac{1}{N}\sum_{n\leqslant N}f(T^{pn}x)\overline{f(T^{qn}x)} = \frac{1}{N}\sum_{n\leqslant N}e^{2\pi ik(x+pn\alpha)}e^{-2\pi ik(x+qn\alpha)} = \frac{1}{N}\sum_{n\leqslant N}e^{2\pi in\left(k(p-q)\alpha\right)} \to 0.$$
15

- μ is aperiodic (classical), that is: $\frac{1}{N} \sum_{n \leq N} \mu(an + b) \rightarrow 0$ for each $a, b \geq 1$. Check that each periodic system is Möbius disjoint; this can be used in a weaker version when a system is "approximated" by periodic systems: Karagulyan for zero entropy interval maps, 2013; subshifts given by regular Toeplitz sequences: El Abdalaoui, Downarowicz, Kasjan, L., 2013.
- Daboussi-Kátai-Bourgain-Sarnak-Ziegler criterion (DKBSZ): $(f_n) \subset \mathbb{C}$ bounded such that $\frac{1}{N} \sum_{n \leq N} f_{pn} \overline{f}_{qn} \to 0$ for each different primes p, q sufficiently large then $\sum_{n \leq N} f_n u(n) \to 0$ for EACH bounded multiplicative $u : \mathbb{N} \to \mathbb{C}$.

In the dynamical context (X, T) we use it for $f_n = f(T^n x)$ (Bourgain, Sarnak, Ziegler - Möbius disjointness of horocycle flows, 2013). Take $Tx = x + \alpha$ an irrational rotation, $f(x) = e^{2\pi i k x}$ with $k \neq 0$, and note that:

$$\frac{1}{N}\sum_{n\leqslant N}f(T^{pn}x)\overline{f(T^{qn}x)} = \frac{1}{N}\sum_{n\leqslant N}e^{2\pi ik(x+pn\alpha)}e^{-2\pi ik(x+qn\alpha)} = \frac{1}{N}\sum_{n\leqslant N}e^{2\pi in\left(k(p-q)\alpha\right)} \to 0.$$

15/21

- μ is aperiodic (classical), that is: $\frac{1}{N} \sum_{n \leq N} \mu(an + b) \rightarrow 0$ for each $a, b \geq 1$. Check that each periodic system is Möbius disjoint; this can be used in a weaker version when a system is "approximated" by periodic systems: Karagulyan for zero entropy interval maps, 2013; subshifts given by regular Toeplitz sequences: El Abdalaoui, Downarowicz, Kasjan, L., 2013.
- Daboussi-Kátai-Bourgain-Sarnak-Ziegler criterion (DKBSZ): $(f_n) \subset \mathbb{C}$ bounded such that $\frac{1}{N} \sum_{n \leq N} f_{pn} \overline{f}_{qn} \to 0$ for each different primes p, q sufficiently large then $\sum_{n \leq N} f_n u(n) \to 0$ for EACH bounded multiplicative $u : \mathbb{N} \to \mathbb{C}$. In the dynamical context (X, T) we use it for $f_n = f(T^n x)$ (Bourgain, Sarnak, Ziegler - Möbius disjointness of horocycle flows, 2013). Take $Tx = x + \alpha$ an irrational rotation, $f(x) = e^{2\pi i k x}$ with $k \neq 0$, and note that:

$$\frac{1}{N}\sum_{n\leq N} f(T^{pn}x)\overline{f(T^{qn}x)} = \frac{1}{N}\sum_{n\leq N} e^{2\pi i k(x+pn\alpha)} e^{-2\pi i k(x+qn\alpha)} = \frac{1}{N}\sum_{n\leq N} e^{2\pi i n \left(k(p-q)\alpha\right)} \to 0.$$
15/2

- Weakness: problem of Möbius disjointness in ALL uniquely ergodic models of an ergodic system.
 - All u.e. models of the one-point system are Möbius disjoint.
 - What about all u.e. models of the periodic system on two points?
 - What about all u.e. models of an irrational rotation? For example when it is topologically mixing (so no chance to have an eigenfunction continuous)...
- Strength: DKBSZ is weaker than Furstenberg disjointness of powers T^p and T^q - classical theory of joinings,
- Matomäki and Radziwiłł, 2015: For the Möbius function we have cancelations on typical short intervals:

 $\frac{1}{M}\sum_{m\leq M} \left| \frac{1}{H}\sum_{h\leq H} \boldsymbol{\mu}(m+h) \right| \to 0 \text{ when } H, M \to \infty \text{ and } H = \mathrm{o}(M).$

- Weakness: problem of Möbius disjointness in ALL uniquely ergodic models of an ergodic system.
 - All u.e. models of the one-point system are Möbius disjoint.
 - What about all u.e. models of the periodic system on two points?
 - What about all u.e. models of an irrational rotation? For example when it is topologically mixing (so no chance to have an eigenfunction continuous)...
- Strength: DKBSZ is weaker than Furstenberg disjointness of powers T^p and T^q - classical theory of joinings,
- Matomäki and Radziwiłł, 2015: For the Möbius function we have cancelations on typical short intervals:

 $\frac{1}{M} \sum_{m \leq M} \left| \frac{1}{H} \sum_{h \leq H} \mu(m+h) \right| \to 0 \text{ when } H, M \to \infty \text{ and } H = o(M).$

- Weakness: problem of Möbius disjointness in ALL uniquely ergodic models of an ergodic system.
 - All u.e. models of the one-point system are Möbius disjoint.
 - What about all u.e. models of the periodic system on two points?
 - What about all u.e. models of an irrational rotation? For example when it is topologically mixing (so no chance to have an eigenfunction continuous)...
- Strength: DKBSZ is weaker than Furstenberg disjointness of powers T^p and T^q - classical theory of joinings,
- Matomäki and Radziwiłł, 2015: For the Möbius function we have cancelations on typical short intervals:

 $\frac{1}{M}\sum_{m\leqslant M} \left| \frac{1}{H}\sum_{h\leqslant H} \mu(m+h) \right| \to 0 \text{ when } H, M \to \infty \text{ and } H = \mathrm{o}(M).$

Möbius disjointness - general results

Theorem (El Abdalaoui, L., de la Rue, 2015)

Möbius disjointness holds for ALL uniquely ergodic models of totally ergodic rotations.

- Via introduction of a joining counterpart of DKBSZ.
- Applies to quasi-discrete spectrum, nil-rotations and other (Flaminio, Frączek, Kułaga-Przymus, L., 2017).

Theorem (Huang, Wang, Zhang, 2016)

Möbius disjointness holds for each (X, T) for which EACH invariant measure yields a measure-theoretic system with discrete spectrum.

- Short interval behaviour of μ used.
- In fact, as shown later by Ferenczi, Kułaga-Przymus and L., an interpretation of a result by Matomäki, Radziwiłł and Tao from 2015 gives that the spectral measure of the function θ in each Furstenberg system must be continuous. Discrete spectrum result immediately follows.

Möbius disjointness - general results

Theorem (El Abdalaoui, L., de la Rue, 2015)

Möbius disjointness holds for ALL uniquely ergodic models of totally ergodic rotations.

- Via introduction of a joining counterpart of DKBSZ.
- Applies to quasi-discrete spectrum, nil-rotations and other (Flaminio, Fraczek, Kułaga-Przymus, L., 2017).

Theorem (Huang, Wang, Zhang, 2016)

Möbius disjointness holds for each (X, T) for which EACH invariant measure yields a measure-theoretic system with discrete spectrum.

Short interval behaviour of μ used.

In fact, as shown later by Ferenczi, Kułaga-Przymus and L., an interpretation of a result by Matomäki, Radziwiłł and Tao from 2015 gives that the spectral measure of the function θ in each Furstenberg system must be continuous. Discrete spectrum result immediately follows.

Möbius disjointness - general results

Theorem (El Abdalaoui, L., de la Rue, 2015)

Möbius disjointness holds for ALL uniquely ergodic models of totally ergodic rotations.

- Via introduction of a joining counterpart of DKBSZ.
- Applies to quasi-discrete spectrum, nil-rotations and other (Flaminio, Fraczek, Kułaga-Przymus, L., 2017).

Theorem (Huang, Wang, Zhang, 2016)

Möbius disjointness holds for each (X, T) for which EACH invariant measure yields a measure-theoretic system with discrete spectrum.

- Short interval behaviour of μ used.
- In fact, as shown later by Ferenczi, Kułaga-Przymus and L., an interpretation of a result by Matomäki, Radziwiłł and Tao from 2015 gives that the spectral measure of the function θ in each Furstenberg system must be continuous. Discrete spectrum result immediately follows.

Theorem (Huang, Wang, Ye, 2017)

Möbius disjointness holds for all systems with sub-polynomial complexity (i.e. smaller than n^{δ} , for each $\delta > 0$) for each invariant measure μ .

The measure complexity of μ is weaker than n^{δ} if

$$\liminf_{n \to \infty} \frac{\min\{m \ge 1 : \mu(\bigcup_{j=1}^{n} B_{d_n}(x_i, \varepsilon)) > 1 - \varepsilon \text{ for some } x_1, \dots, x_m \in X\}}{n^{\delta}} = 0$$

for each $\varepsilon > 0$ (here $d_n(y,z) = rac{1}{n} \sum_{j=1}^n d(T^j y,T^j z)$).

All examples either with all invariant measures giving rise to discrete spectrum or C^{∞} -Anzai skew products.

Theorem (Huang, Wang, Ye, 2017)

Möbius disjointness holds for all systems with sub-polynomial complexity (i.e. smaller than n^{δ} , for each $\delta > 0$) for each invariant measure μ .

• The measure complexity of μ is weaker than n^{δ} if

$$\liminf_{n\to\infty}\frac{\min\{m\geqslant 1:\mu(\bigcup_{j=1}^n B_{d_n}(x_i,\varepsilon))>1-\varepsilon \text{ for some } x_1,\ldots,x_m\in X\}}{n^\delta}=0$$

for each $\varepsilon > 0$ (here $d_n(y, z) = \frac{1}{n} \sum_{j=1}^n d(T^j y, T^j z)$).

All examples either with all invariant measures giving rise to discrete spectrum or C^{∞} -Anzai skew products.

Theorem (Frantzikinakis, Host, 2017)

Assume that (X, T) is a zero entropy dynamical system whose set $M^e(X, T)$ of ergodic invariant measures is countable. Then (X, T) is **logarithmically** Möbius disjoint.

- Tao's identities (on infinite averages of sequences) used in his proof of logarithmic Chowla for correlations of length 2.
- Theory of strongly stationary processes.
- New disjointness theorems in ergodic theory.

Theorem (Frantzikinakis, Host, 2017)

Assume that (X, T) is a zero entropy dynamical system whose set $M^e(X, T)$ of ergodic invariant measures is countable. Then (X, T) is **logarithmically** Möbius disjoint.

- Tao's identities (on infinite averages of sequences) used in his proof of logarithmic Chowla for correlations of length 2.
- Theory of strongly stationary processes.
- New disjointness theorems in ergodic theory.

From logarithmic Sarnak's conjecture to Sarnak's conjecture

Theorem (Gomilko, L., de la Rue, 2019)

If (X, T) satisfies the logarithmic strong MOMO property, then there exists $A = A(X, T) \subset \mathbb{N}$ of **full logarithmic density** such that for each $f \in C(X)$ and $x \in X$, we have

 $\frac{1}{N}\sum_{n\leq N}f(T^nx)\mu(n)\to 0 \text{ along } A\ni N\to\infty.$

• (X, T) satisfies the logarithmic strong MOMO property if for each increasing sequence (b_k) with $b_{k+1} - b_k \rightarrow \infty$, we have

$$\lim_{K\to\infty} \frac{1}{\log b_{K+1}} \sum_{k\leqslant K} \left\| \sum_{b_k\leqslant n < b_{k+1}} \frac{\mu(n)}{n} f \circ T^n \right\|_{C(X)} = 0.$$

- Logarithmic Sarnak holds if and only if logarithmic strong MOMO holds for all zero entropy systems.
- All systems of zero entropy having only countably many ergodic invariant measures satisfy the logarithmic strong MOMO property.

Corollary

If (X, T) has zero entropy and $M^e(X, T)$ is countable then the system is Möbius disjoint in full logarithmic density.

From logarithmic Sarnak's conjecture to Sarnak's conjecture

Theorem (Gomilko, L., de la Rue, 2019)

If (X, T) satisfies the logarithmic strong MOMO property, then there exists $A = A(X, T) \subset \mathbb{N}$ of **full logarithmic density** such that for each $f \in C(X)$ and $x \in X$, we have

$$rac{1}{N}\sum_{n\leq N}f(T^nx)\mu(n)
ightarrow 0$$
 along $A
i N
ightarrow\infty.$

• (X, T) satisfies the logarithmic strong MOMO property if for each increasing sequence (b_k) with $b_{k+1} - b_k \rightarrow \infty$, we have

$$\lim_{K\to\infty} \frac{1}{\log b_{K+1}} \sum_{k\leqslant K} \left\| \sum_{b_k\leqslant n < b_{k+1}} \frac{\mu(n)}{n} f \circ T^n \right\|_{C(X)} = 0.$$

- Logarithmic Sarnak holds if and only if logarithmic strong MOMO holds for all zero entropy systems.
- All systems of zero entropy having only countably many ergodic invariant measures satisfy the logarithmic strong MOMO property.

Corollary

If (X, T) has zero entropy and $M^e(X, T)$ is countable then the system is Möbius disjoint in full logarithmic density.

From logarithmic Sarnak's conjecture to Sarnak's conjecture

Theorem (Gomilko, L., de la Rue, 2019)

If (X, T) satisfies the logarithmic strong MOMO property, then there exists $A = A(X, T) \subset \mathbb{N}$ of **full logarithmic density** such that for each $f \in C(X)$ and $x \in X$, we have

$$rac{1}{N}\sum_{n\leq N}f(T^nx)\mu(n)
ightarrow 0$$
 along $A
i N
ightarrow\infty.$

• (X, T) satisfies the logarithmic strong MOMO property if for each increasing sequence (b_k) with $b_{k+1} - b_k \rightarrow \infty$, we have

$$\lim_{K\to\infty} \frac{1}{\log b_{K+1}} \sum_{k\leqslant K} \left\| \sum_{b_k\leqslant n < b_{k+1}} \frac{\mu(n)}{n} f \circ T^n \right\|_{C(X)} = 0.$$

- Logarithmic Sarnak holds if and only if logarithmic strong MOMO holds for all zero entropy systems.
- All systems of zero entropy having only countably many ergodic invariant measures satisfy the logarithmic strong MOMO property.

Corollary

If (X, T) has zero entropy and $M^e(X, T)$ is countable then the system is Möbius disjoint in full logarithmic density.

Theorem (Kanigowski, L., Radziwiłł, 2019)

If each measure $\mu \in M(X, T)$ yields a rigid measure-theoretic system (i.e. there exists (q_n) such that $\mu(T^{q_n}A \triangle A) \to 0$ for each Borel $A \subset X$) then (X, T) is Möbius disjoint.

- Strengthening of the main result in Matomäki- Radziwiłł from 2015, to short interval behaviour along arithmetic progressions.
- Yields Möbius disjointness of all 3-IETs (previously known only in the a.e. versions, Bourgain 2011, Chaika-Eskin 2017). Yields Möbius disjointness of a.e. IET.

Theorem (Kanigowski, L., Radziwiłł, 2019)

If each **ergodic** invariant measure of (X, T) yields a rigid system and there are only countably many ergodic measures then (X, T) is Möbius disjoint.