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pM, gq compact, boundaryless, C8 Rieman-
nian manifold with negative sectional curva-
ture and dimension d.

pM, gq is locally symmetric if, locally, the geo-
desic symmetries are isometries.
Equivalently, the group G of isometries of the universal cover

pĂM, rgq is a semi-simple Lie group with real rank 1, the Killing

form on G defines the Riemannian rg metric on G{K, K maxi-

mal compact subgroup, and pM, gq “ ΓzpG{K, rgq for a cocompact

torsion free discrete group Γ.
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Our Game Recognising locally symmetric
spaces through global properties.

Ex. 1 Asymptotically harmonic manifolds.

Let pĂM, rgq be the universal cover of pM, gq.
pĂM, rgq is a Hadamard manifold, two geodesic rays in ĂM are said
to be equivalent if suptě0 dpγ1ptq, γ2ptqq ă 8.

The space of equivalence classes is the boundary at infinity BĂM.
SĂM is identified with ĂM ˆ BĂM.

Fix ξ P BĂM. ĂM ˆ tξu is the stable manifold ĂW spvq

ĂW spvq :“ tw : sup
tě0

dpϕtw,ϕtvq ă `8u.

ĂW spvq is endowed with the metric rg.
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Busemann function: Fix px, ξq P SĂM, y P ĂM,

bx,ξpyq :“ lim
zÑξ

pdpy, zq ´ dpx, zqq .

The level set tpy, ξq : bx,ξpyq “ 0u is the strong stable manifold

ĂW sspx, ξq :“ tpy, ξq : lim
tÑ8

dpγx,ξptq, γy,ξptqq “ 0u.

ĂW sspx, ξq projects onto
W sspvq “ tw P SM : lim

tÑ8
dpγwptq, γvptqq “ 0u.

pM, gq is called asymptotically harmonic if
the function Bpx, ξq is constant,

Bpx, ξq :“ ∆ybx,ξpyq|y“x “ ´Div
sXpvq.
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Theorem pM, gq is asymptotically harmonic
(i.e. the function ∆ybx,ξpyq|y“x is independent of px, ξq)

if, and only if, the space pM, gq is locally sym-
metric.

The proof combines the works of Benoist-Foulon-

Labourie (92), Foulon-Labourie (92) and Besson-Courtois-

Gallot (95).

Example ĂM “ H2
R, bo,ξpyq is ´ log(Poisson kernel).

Then, ∆ybo,ξpyq|y“x “ }∇ybo,ξpyq|y“x}
2 “ 1.
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Ex. 2 Volume entropy V pgq
Let pĂM, rgq be the universal cover of pM, gq,

V pgq :“ lim
RÑ8

1

R
log VolB

ĂM
px,Rq.

Hpgq :“ the measure entropy of the geodesic
flow for the Liouville measure mL.

Fact H ď V , with equality for locally sym-
metric spaces.

Katok conjecture H “ V only for locally
symmetric spaces.
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Conjecture H “ V only for locally symmetric spaces.
True for surfaces (Katok 82).

More generally for g “ e2ϕg0, pM, g0q locally symmetric.

True in a C2 neighborhood of pM, g0q with
constant curvature (Flaminio 97).

Open in general.

Remark H “
ş

B dmL, by Pesin formula.
V “

ş

B dmBR, where mBR is the Burger-
Roblin measure.
Katok conjecture reduces to

ş

B dmL “
ş

B dmBR
if, and only if, B is constant.
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Burger-Roblin measure mBR.

Consider SxM Ă SM , ϕt the geodesic flow and for r ą
0,mr the normalized Lebesgue measure on ϕ´rSxM .
Then, (Margulis, Knieper)

mBR :“ lim
rÑ8

mr.

Fact Fix x0. There exists a measure ν on BĂM such
that, locally:

dmBRpx, ξq “ e´V bx0,ξpyqdνpξqdVolpyq.

In particular, for any C1 vector field Z on SM such
that Zpvq is tangent to W spvq for all v P SM ,
ż

SM

DivsZpvq ` V ă Zpvq, Xpvq ą dmBRpvq “ 0. (1)
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ż

SM

DivsZpvq`V ă Zpvq, Xpvq ą dmBRpvq “ 0. p1q

Corollary 1
ş

B dmBR “ V. (Apply (1) to Z “ X.)

Corollary 2 The measure mBR is stationary
for the operator ∆s ` V X: for F P CpSMq,

ż

SM

p∆s ` V XqF dmBR “ 0.

(Apply (1) to Z “ ∇sF .)
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ż

SM

DivsZpvq`V ă Zpvq, Xpvq ą dmBRpvq “ 0. p1q

Corollary 3 The measure mBR is the unique
stationary probability for the Laplacian ∆ss

along the strong stable foliation W ss.
(Apply (1) to Zpvq “ d

dt
F pϕtvq|t“0Xpvq. Uniqueness

follows from Kaimanovich and Bowen-Marcus.)
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Theorem [ L.-Shu, (18), (19)]
There exists a family of probability measures
mρ,´8 ă ρ ă V, such that:

1. mρ Ñ mBR as ρÑ V,

2. mρ Ñ mL as ρÑ ´8,

3.
ş

B dmρ ď
ş

B dmBR “ V, with equality at
any ρ,´8 ă ρ ă V if, and only if, the
function B is constant.
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Proof of 1. and 3. ([L-Shu 19])
For ´8 ă ρ ă V,∆s ` ρX admits a unique
stationary measure mρ. (Hamenstädt 97)

Fix x0. There exist a measure νρ on BĂM and a function
Kρ
x,ξpyq such that, locally:

dmρpx, ξq “ Kρ
x0,ξ
pyqdνρpξqdVolpyq.

y ÞÑ Kρ
x,ξpyq is C

8, px, ξq ÞÑ Kρ
x0,ξ
pyq,∇yK

ρ
x0,ξ
pyq are Höl-

der continuous (Garnett, Hamenstädt).

In particular, for any C1 vector field Z on SM such
that Zpvq is tangent to W spvq for all v P SM ,

ż

SM

DivsZ´ ă Z,∇s logKρ ą dmρ “ 0. (2)
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By (2) applied to Z “ X, we get
ż

B dmρ “ ´

ż

ă X,∇s logKρ ą dmρ,

and, by Schwarz inequality,

p

ż

B dmρq
2 ď

ż

SM
}∇s logKρ

x,ξ}
2 dmρ, (3)

with equality only if ∇s logKρ “ τpρqX for
some τpρq.
The terms in the inequality (3) have a geo-
metric interpretation related to the diffusion
associated to the Markov operator ∆s` ρX.
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Recall that mρ is the unique Lρ-stationary
mesure, where

LρξF px, ξq “ ∆s
yF py, ξq|y“x ` ρ ă X,∇s

yF py, ξq|y“x ąx,ξ .

It defines a diffusion process ωt, t ě 0 with
the property that the trajectory ωt PW spω0q @t.

The linear drift is defined by the a.e. limit

`ρ :“ lim
tÑ8

1

t
b
rωp0qprωptqq “ ´ρ`

ż

B dmρ.

`ρ “ lim
tÑ0`

1

t
Emρ

b
rωp0qprωptqq “

ż

p∆s`ρXqybx,ξpyq
ˇ

ˇ

y“x
dmρpx, ξq.
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The stochastic entropy (Kaimanovich 86)
is defined by the a.e. limit

hρ :“ lim
tÑ8

´
1

t
log pρpt, rωp0q, rωptqq,

where rωt, t ě 0 is the lifted trajectory to SĂM and

pρpt, rv, rwq the corresponding heat kernel. We have

hρ “

ż

SM

´

}∇s logKρ
x,ξ}

2 ´ ρBpx, ξq
¯

dmρ

and the fundamental inequality (Guivarc’h)

hρ ď V `ρ. (4)
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hρ “

ż

SM

´

}∇s logKρ
x,ξ}

2 ´ ρBpx, ξq
¯

`ρ “ ´ρ`

ż

B dmρ and hρ ď V `ρ.

Proof of 3. By Schwarz inequality (3),

hρ ě p

ż

B dmρq
2´ρp

ż

B dmρq “ `ρp

ż

B dmρq.

Proof of 1. Let m be a limit of mρn, ρn Ñ V.

lim inf
ρÑV

ż

B dmρ “ lim inf
ρÑV

pρ` `ρq ě V,
ż

B dm “ V, lim
n
`ρn “ 0, lim

n
hρn “ 0
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ż

B dm “ V, lim
n
`ρn “ 0, lim

n
hρn “ 0

Then, if Zn :“ ∇s logKρn
x,ξ´p

ş

B dmρnqX, then

lim
n

ż

}Zn}
2 dmρn “ 0.

It follows that the measure m is stationary
for ∆ss, and thus has to coincide with mBR.
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Proof of 2. Let m be a weak*-limit of mρ

as ρ Ñ ´8. We want to show that m “ mL.

Set ρ “ ´ 1
ε2; mρ is stationary for ´X ` ε2∆s.

As ρ Ñ ´8, ε Ñ 0, and m is stationary for
´X, i.e. m is invariant under the geodesic
flow.

By Bowen and Ruelle, the Liouville measure
mL is characterized as the only geodesic flow
invariant measure m1 that satisfies

hm1 “

ż

SM
pDvϕ´1q

ˇ

ˇ

Espvq
dm1pvq.

19



Remains to prove that hm “
ş

SM
pDvϕ´1q

ˇ

ˇ

Espvq
dmpvq.

The proof in (L.-Shu 18) follows 5 steps:

1. The construction of a stochastic flow with sta-
tionary measure mρ (after Elworthy, we have to
go to a bigger space).

2. The definition of the relative entropy for a sto-
chasic flow (after Kifer).

3. Pesin formula for random diffeos (follows Mañé
and Liu-Shu).

4. Continuity of the RHS (from SDE theory)

5. Uper-semi-continuity of the entropy (after Yom-
din. The C8 hypothesis is essential here).
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