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(M, g) compact, boundaryless, C* Rieman-
nian manifold with negative sectional curva-
ture and dimension d.

(M, g) is locally symmetric if, locally, the geo-
desic symmetries are isometries.

Equivalently, the group G of isometries of the universal cover
(J\7,§) is a semi-simple Lie group with real rank 1, the Killing
form on & defines the Riemannian g metric on G/K, K maxi-
mal compact subgroup, and (M, g) = N\ (G/K, g) for a cocompact

torsion free discrete group .



Our Game Recognising locally symmetric
spaces through global properties.

Ex. 1 Asymptotically harmonic manifolds.

Let (M,§) be the universal cover of (M, g).

(]\7, g) is a Hadamard manifold, two geodesic rays in M are said
to be equivalent if sup;so d(y1(t),v2(t)) < .

‘The space of equivalence classes is the boundary at infinity OM.
SM is identified with M x 0M.

Fix ¢ € M. M x {¢} is the stable manifold W*(v)

V[N/'S(v) = {w :supd(prw, prv) < +0}.
t=0

W#(v) is endowed with the metric §.



Busemann function: Fix (x,§) € SM, y € M,

m (d(y, z) — d(z, z)) .

b:c,£ (y) = :LI—>§

The level set {(y,&) : bye(y) = O} is the strong stable manifold
W (,€) = {(9,€) - lim d(.¢(t), 7e(t)) = O}.

W*s(z, £) projects onto
W(v) = {we SM : lim d(yw(t), v (t)) = 0}.

t—o0

(M, g) is called asymptotically harmonic if
the function B(x, &) is constant,

B(@,€) = Dyby e(y)ly—z = —DIVTX(v).
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Theorem (M, g) is asymptotically harmonic
(i.e. the function Ayb, ¢(y)|y-« is independent of (x,§))
if, and only if, the space (M, g) is locally sym-
metric.

The proof combines the works of Benoist-Foulon-
Labourie (92), Foulon-Labourie (92) and Besson-Courtois-
Gallot (95).

Example M = H2, boe(y) is —log(Poisson kernel).
Then, Ayboe)ly—s = [Vboe(m)ly—el? = 1.



Ex. 2 Volume entropy V(g)
Let (M,g) be the universal cover of (M, g),

. H 1
Vig) := }%[)noo - log VolBr(z, R).

H(g) := the measure entropy of the geodesic
flow for the Liouville measure my.

Fact H <V, with equality for locally sym-
metric spaces.

Katok conjecture H = V only for locally
symmetric spaces.



Conjecture H =V only for locally symmetric spaces.
True for surfaces (Katok 82).

More generally for g = e?#gq, (M, go) locally symmetric.

True in a C? neighborhood of (M, gg) with
constant curvature (Flaminio 97).

Open in general.

Remark H = { Bdmj, by Pesin formula.

V = {Bdmpgpgr, where mpgp is the Burger-
Roblin measure.

Katok conjecture reduces to { Bdm, = { Bdmpg
if, and only if, B is constant.



Burger-Roblin measure mpggp.

Consider S;M < SM, ¢ the geodesic flow and for r >
0, m, the normalized Lebesgue measure on ¢_,.S, M.
Then, (Margulis, Knieper)

MBR = ilr?Omr

Fact Fix xg. There exists a measure v on OM such
that, locally:

dmpr(z,€) = e VoW du(€)dVol(y).

In particular, for any C' vector field Z on SM such
that Z(v) is tangent to W*(v) for all ve SM,

Div°Z(v)+V < Z(v), X(v) > dmpgr(v) = 0. (1)
SM



J DV Z(w)+V < Z(v),X(v) > dmpr(v) — 0. (1)
SM

Corollary 1 { Bdmpgr = V. (Apply (1) to Z = X.)

Corollary 2 The measure mpgp, is stationary
for the operator A% +V X: for FFe C(SM),

J (AS + VY)deBR = 0.
SM

(Apply (1) to Z = V3F.)
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f DV Z(w)+V < Z(v), X(v) > dmpr(v) — 0. (1)
SM

Corollary 3 The measure mpgpg is the unique
stationary probability for the Laplacian A®®
along the strong stable foliation W35,

(Apply (1) to Z(v) = 2F(pw)—0 X(v). Uniqueness
follows from Kaimanovich and Bowen-Marcus.)
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Theorem [ L.-Shu, (18), (19)]
T here exists a family of probability measures
mp, —0 < p <V, such that:

1. Mmp — MPBR as p—V,
2. mp— myp, as p — —0,

3. {Bdm, < { Bdmpgpr =V, with equality at
any p,—oo < p < V if, and only if, the
function B is constant.
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Proof of 1. and 3. ([L-Shu 19])
For —w < p < V,A% + pX admits a unique
stationary measure m,. (Hamenstadt 97)

Fix zg. There exist a measure v” on oM and a function
K7 .(y) such that, locally:

dimy(,€) = K, (y)av*()avol(y).

y — KJ (y) is C%, (z,€) — K] (y), VyK[ .(y) are HOI-
der continuous (Garnett, Hamenstaddt).

In particular, for any C! vector field Z on SM such
that Z(v) is tangent to W#(v) for all ve SM,

f Div*Z— < Z,V®log K” > dm, = 0. (2)
SM
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By (2) applied to Z = X, we get

and, by Schwarz inequality,

(J Bdm,)? < f |V*log KF £H2 dmp, (3)
SM ’

with equality only if VSlog K? = 7(p)X for
some 7(p).

The terms in the inequality (3) have a geo-
metric interpretation related to the diffusion
associated to the Markov operator A% + pX.
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Recall that m, is the unique LF-stationary
mesure, where

LQF(xﬁg) = AZF(y7€)‘y=x + p < 77 V§F<y7£)|y=x >:E,§ .

It defines a diffusion process w¢,t = 0 with
the property that the trajectory w; € W#(wq) Vt.

The linear drift is defined by the a.e. limit

£y = lim by o) (@(1) — —p+demp.

t—oo ¢

b = im B biio(@(1) = [(A%+pX)bue(u)],., dmiz.©)

t—0+ ¢
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The stochastic entropy (Kaimanovich 86)
is defined by the a.e. limit

1
ho = Jim ——logp(t,&(0),&(t)),

t—0o0

where @, t > 0 is the lifted trajectory to SM and

p”(t,v,w) the corresponding heat kernel. We have

b= | (I 100 K2 (12 = pB(w.8)) dm,
SM ’
and the fundamental inequality (Guivarc'h)

hp < Vi, (4)
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b = | (19100 K2 2~ pB(s.0))

0, = —p+JBdmp and h, < V4,
Proof of 3. By Schwarz inequality (3),
hy = (JBdmp)Q—p(JBdmp) - ep(demp).
Proof of 1. Let m be a limit of my,,, pn — V.
IimianBdmp = liminf(p+¢£,) >V,

p—V p—V

dem - V, lim¢, =0, limh, = O
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JBdm -V, lim¢, =0, limh, = 0

Then, if Z, := VSlog K. —({ Bdm, )X, then
x,§ Pn

: 2
"T';”“Zn” dm,, = O.

It follows that the measure m is stationary
for A®%, and thus has to coincide with mpgg.
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Proof of 2. Let m be a weak*-limit of m,
as p — —oo. We want to show that m = mj,.
Set p = —=5; my is stationary for —X +£2A*.

As p - —oo,e — 0, and m is stationary for
—X, i.e. m is invariant under the geodesic
flow.

By Bowen and Ruelle, the Liouville measure
mj, IS characterized as the only geodesic flow
invariant measure m’ that satisfies

h , = Dy 1) e+ dm/(v).
m JSM( ¥ 1>‘E (v) m(v)
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Remains to prove that h,, = SSM<DU(’O_1)‘ES(U) dm(v).
The proof in (L.-Shu 18) follows 5 steps:

1.

The construction of a stochastic flow with sta-
tionary measure m, (after Elworthy, we have to
go to a bigger space).

. T he definition of the relative entropy for a sto-

chasic flow (after Kifer).

Pesin formula for random diffeos (follows Mané
and Liu-Shu).

Continuity of the RHS (from SDE theory)

Uper-semi-continuity of the entropy (after Yom-
din. The C* hypothesis is essential here).
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