Rigidity of negatively curved manifolds

François Ledrappier

LPSM, Sorbonne Université, and University of Notre Dame

Sto Lat, Michał!

1

KWIAT

(M,g) compact, boundaryless, C^{∞} Riemannian manifold with negative sectional curvature and dimension d.

(M,g) is *locally symmetric* if, locally, the geodesic symmetries are isometries.

Equivalently, the group G of isometries of the universal cover $(\widetilde{M}, \widetilde{g})$ is a semi-simple Lie group with real rank 1, the Killing form on \mathfrak{G} defines the Riemannian \widetilde{g} metric on G/K, K maximal compact subgroup, and $(M,g) = \Gamma \setminus (G/K, \widetilde{g})$ for a cocompact torsion free discrete group Γ .

Our Game Recognising locally symmetric spaces through global properties.

Ex. 1 Asymptotically harmonic manifolds.

Let $(\widetilde{M}, \widetilde{g})$ be the universal cover of (M, g).

 $(\widetilde{M},\widetilde{g})$ is a Hadamard manifold, two geodesic rays in \widetilde{M} are said to be equivalent if $\sup_{t\geq 0} d(\gamma_1(t),\gamma_2(t)) < \infty$.

The space of equivalence classes is the boundary at infinity $\partial \widetilde{M}$. $S\widetilde{M}$ is identified with $\widetilde{M} \times \partial \widetilde{M}$.

Fix $\xi \in \partial \widetilde{M}$. $\widetilde{M} \times \{\xi\}$ is the stable manifold $\widetilde{W}^{s}(v)$ $\widetilde{W}^{s}(v) := \{w : \sup_{t \ge 0} d(\varphi_{t}w, \varphi_{t}v) < +\infty\}.$

 $\widetilde{W}^{s}(v)$ is endowed with the metric $\widetilde{g}.$

Busemann function: Fix $(x,\xi) \in \widetilde{M}, y \in \widetilde{M},$ $b_{x,\xi}(y) := \lim_{z \to \xi} \left(d(y,z) - d(x,z) \right).$

The level set $\{(y,\xi) : b_{x,\xi}(y) = 0\}$ is the strong stable manifold $\widetilde{W}^{ss}(x,\xi) := \{(y,\xi) : \lim_{t \to \infty} d(\gamma_{x,\xi}(t), \gamma_{y,\xi}(t)) = 0\}.$

 $\widetilde{W}^{ss}(x,\xi)$ projects onto

$$W^{ss}(v) = \{w \in SM : \lim_{t \to \infty} d(\gamma_w(t), \gamma_v(t)) = \mathsf{0}\}.$$

(M,g) is called *asymptotically harmonic* if the function $B(x,\xi)$ is constant,

$$B(x,\xi) := \Delta_y b_{x,\xi}(y)|_{y=x} = -\mathsf{Div}^s \overline{X}(v).$$

Theorem (M,g) is asymptotically harmonic (i.e. the function $\Delta_y b_{x,\xi}(y)|_{y=x}$ is independent of (x,ξ)) if, and only if, the space (M,g) is locally symmetric.

The proof combines the works of Benoist-Foulon-Labourie (92), Foulon-Labourie (92) and Besson-Courtois-Gallot (95).

Example $\widetilde{M} = \mathbb{H}^2_{\mathbb{R}}$, $b_{o,\xi}(y)$ is $-\log(\text{Poisson kernel})$. Then, $\Delta_y b_{o,\xi}(y)|_{y=x} = \|\nabla_y b_{o,\xi}(y)|_{y=x}\|^2 = 1$. **Ex. 2** Volume entropy V(g)Let $(\widetilde{M},\widetilde{g})$ be the universal cover of (M,g),

$$V(g):=\lim_{R\to\infty}\frac{1}{R}\log {\rm Vol}B_{\widetilde{M}}(x,R).$$

H(g) := the measure entropy of the geodesic flow for the Liouville measure m_L .

Fact $H \leq V$, with equality for locally symmetric spaces.

Katok conjecture H = V only for locally symmetric spaces.

Conjecture H = V only for locally symmetric spaces. True for surfaces (Katok 82).

More generally for $g=e^{2\varphi}g_0$, (M,g_0) locally symmetric.

True in a C^2 neighborhood of (M, g_0) with constant curvature (Flaminio 97).

Open in general.

Remark $H = \int B dm_L$, by Pesin formula. $V = \int B dm_{BR}$, where m_{BR} is the Burger-Roblin measure.

Katok conjecture reduces to $\int B dm_L = \int B dm_{BR}$ if, and only if, B is constant.

Burger-Roblin measure m_{BR} .

Consider $S_x M \subset SM$, φ_t the geodesic flow and for $r > 0, m_r$ the normalized Lebesgue measure on $\varphi_{-r}S_x M$. Then, (Margulis, Knieper)

$$m_{BR} := \lim_{r \to \infty} m_r.$$

Fact Fix x_0 . There exists a measure ν on $\partial \widetilde{M}$ such that, locally:

$$dm_{BR}(x,\xi) = e^{-Vb_{x_0,\xi}(y)}d\nu(\xi)d\mathsf{Vol}(y).$$

In particular, for any C^1 vector field Z on SM such that Z(v) is tangent to $W^s(v)$ for all $v \in SM$,

 $\int_{SM} Div^{s} Z(v) + V < Z(v), \overline{X}(v) > dm_{BR}(v) = 0.$ (1)

$$\int_{SM} \operatorname{Div}^{s} Z(v) + V < Z(v), \overline{X}(v) > dm_{BR}(v) = 0.$$
(1)

Corollary 1
$$\int B dm_{BR} = V$$
. (Apply (1) to $Z = \overline{X}$.)

Corollary 2 The measure m_{BR} is stationary for the operator $\Delta^s + V\overline{X}$: for $F \in C(SM)$,

$$\int_{SM} (\Delta^s + V\overline{X}) F \, dm_{BR} = 0.$$
 (Apply (1) to $Z = \nabla^s F.$)

$$\int_{SM} \operatorname{Div}^{s} Z(v) + V < Z(v), \overline{X}(v) > dm_{BR}(v) = 0.$$
(1)

Corollary 3 The measure m_{BR} is the unique stationary probability for the Laplacian Δ^{ss} along the strong stable foliation W^{ss} . (Apply (1) to $Z(v) = \frac{d}{dt}F(\varphi_t v)|_{t=0}\overline{X}(v)$. Uniqueness follows from Kaimanovich and Bowen-Marcus.) **Theorem** [L.-Shu, (18), (19)] There exists a family of probability measures $m_{\rho}, -\infty < \rho < V$, such that:

1.
$$m_{\rho} \rightarrow m_{BR}$$
 as $\rho \rightarrow V$,

2.
$$m_{\rho} \rightarrow m_L$$
 as $\rho \rightarrow -\infty$,

3. $\int B dm_{\rho} \leq \int B dm_{BR} = V$, with equality at any $\rho, -\infty < \rho < V$ if, and only if, the function B is constant. Proof of 1. and 3. ([L-Shu 19]) For $-\infty < \rho < V, \Delta^s + \rho \overline{X}$ admits a unique stationary measure m_{ρ} . (Hamenstädt 97)

Fix x_0 . There exist a measure ν^{ρ} on ∂M and a function $K_{x,\xi}^{\rho}(y)$ such that, locally:

$$dm_{\rho}(x,\xi) = K^{\rho}_{x_0,\xi}(y)d\nu^{\rho}(\xi)d\mathrm{Vol}(y).$$

 $y \mapsto K^{\rho}_{x,\xi}(y)$ is C^{∞} , $(x,\xi) \mapsto K^{\rho}_{x_0,\xi}(y), \nabla_y K^{\rho}_{x_0,\xi}(y)$ are Hölder continuous (Garnett, Hamenstädt).

In particular, for any C^1 vector field Z on SM such that Z(v) is tangent to $W^s(v)$ for all $v \in SM$,

$$\int_{SM} \operatorname{Div}^{s} Z - \langle Z, \nabla^{s} \log K^{\rho} \rangle \ dm_{\rho} = 0.$$
 (2)

By (2) applied to $Z = \overline{X}$, we get

$$\int B \, dm_{\rho} = -\int < \overline{X}, \nabla^s \log K^{\rho} > \, dm_{\rho},$$

and, by Schwarz inequality,

$$(\int B \, dm_{\rho})^2 \leqslant \int_{SM} \|\nabla^s \log K_{x,\xi}^{\rho}\|^2 \, dm_{\rho}, \quad (3)$$

with equality only if $\nabla^s \log K^\rho = \tau(\rho) \overline{X}$ for some $\tau(\rho).$

The terms in the inequality (3) have a geometric interpretation related to the *diffusion* associated to the Markov operator $\Delta^s + \rho \overline{X}$.

Recall that m_{ρ} is the unique $\mathcal{L}^{\rho}\text{-stationary}$ mesure, where

$$\mathcal{L}^{\rho}_{\xi}F(x,\xi) = \Delta^s_y F(y,\xi)|_{y=x} + \rho < \overline{X}, \nabla^s_y F(y,\xi)|_{y=x} >_{x,\xi}.$$

It defines a diffusion process $\omega_t, t \ge 0$ with the property that the trajectory $\omega_t \in W^s(\omega_0) \ \forall t$.

The *linear drift* is defined by the a.e. limit

$$\ell_{\rho} := \lim_{t \to \infty} \frac{1}{t} b_{\widetilde{\omega}(0)}(\widetilde{\omega}(t)) = -\rho + \int B \, dm_{\rho}.$$

$$\ell_{\rho} = \lim_{t \to 0^+} \frac{1}{t} \mathbb{E}_{m_{\rho}} b_{\widetilde{\omega}(0)}(\widetilde{\omega}(t)) = \int (\Delta^s + \rho \overline{X})_y b_{x,\xi}(y) \big|_{y=x} \, dm_{\rho}(x,\xi).$$

The *stochastic entropy* (Kaimanovich 86) is defined by the a.e. limit

$$h_{
ho} := \lim_{t \to \infty} -\frac{1}{t} \log p^{
ho}(t, \widetilde{\omega}(0), \widetilde{\omega}(t)),$$

where $\widetilde{\omega}_t, t \ge 0$ is the lifted trajectory to $S\widetilde{M}$ and $p^{\rho}(t, \widetilde{v}, \widetilde{w})$ the corresponding heat kernel. We have

$$h_{\rho} = \int_{SM} \left(\|\nabla^s \log K_{x,\xi}^{\rho}\|^2 - \rho B(x,\xi) \right) \, dm_{\rho}$$

and the fundamental inequality (Guivarc'h)

$$h_{\rho} \leq V \ell_{\rho}.$$
 (4)

$$\begin{split} h_{\rho} &= \int_{SM} \left(\|\nabla^{s} \log K_{x,\xi}^{\rho}\|^{2} - \rho B(x,\xi) \right) \\ \ell_{\rho} &= -\rho + \int B \, dm_{\rho} \quad \text{and} \quad h_{\rho} \leq V \ell_{\rho}. \end{split}$$

Proof of 3. By Schwarz inequality (3),

$$h_{\rho} \geq (\int B \, dm_{\rho})^2 - \rho(\int B \, dm_{\rho}) = \ell_{\rho}(\int B \, dm_{\rho}).$$

Proof of 1. Let m be a limit of $m_{\rho_n}, \rho_n \to V.$

$$\liminf_{\rho \to V} \int B \, dm_{\rho} = \liminf_{\rho \to V} (\rho + \ell_{\rho}) \geq V,$$

$$\int B \, dm = V, \quad \lim_{n} \ell_{\rho_n} = 0, \quad \lim_{n} h_{\rho_n} = 0$$

17

$$\int B \, dm = V, \quad \lim_{n} \ell_{\rho_n} = 0, \quad \lim_{n} h_{\rho_n} = 0$$

Then, if $Z_n := \nabla^s \log K_{x,\xi}^{\rho_n} - (\int B \, dm_{\rho_n}) \overline{X}$, then
$$\lim_{n} \int \|Z_n\|^2 \, dm_{\rho_n} = 0.$$

It follows that the measure m is stationary for Δ^{ss} , and thus has to coincide with m_{BR} .

Proof of 2. Let m be a weak*-limit of m_{ρ} as $\rho \to -\infty$. We want to show that $m = m_L$. Set $\rho = -\frac{1}{\varepsilon^2}$; m_{ρ} is stationary for $-\overline{X} + \varepsilon^2 \Delta^s$.

As $\rho \to -\infty, \varepsilon \to 0$, and m is stationary for $-\overline{X}$, i.e. m is invariant under the geodesic flow.

By Bowen and Ruelle, the Liouville measure m_L is characterized as the only geodesic flow invariant measure m' that satisfies

$$h_{m'} = \int_{SM} (D_v \varphi_{-1}) \big|_{E^s(v)} dm'(v).$$

Remains to prove that $h_m = \int_{SM} (D_v \varphi_{-1}) \Big|_{E^s(v)} dm(v)$. The proof in (L.-Shu 18) follows 5 steps:

- 1. The construction of a stochastic flow with stationary measure m_{ρ} (after Elworthy, we have to go to a bigger space).
- 2. The definition of the relative entropy for a stochasic flow (after Kifer).
- 3. Pesin formula for random diffeos (follows Mañé and Liu-Shu).
- 4. Continuity of the RHS (from SDE theory)
- 5. Uper-semi-continuity of the entropy (after Yomdin. The C^{∞} hypothesis is essential here).

References

- G. Besson, G. Courtois and S. Gallot, Entropies et rigidités des espaces localement symétriques de courbure strictement négative, *GAFA*, **5** (1995), 731–799.
- Y. Benoist, P. Foulon and F. Labourie, Flots d'Anosov à distributions stables et instables différentiables, *J. Amer. Math. Soc.* **5** (1992), 33–74.
- R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math., **470**, Springer-Verlag, Berlin-New York, 1975.
- R. Bowen and B. Marcus, Unique ergodicity of the stable foliation, *Israel J. Math.* **26** (1977), 43–67.
- R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, *Invent. Math.* **29** (1975), 389–449.
- K. D. Elworthy, Stochastic Differential Equations on Manifolds, London Mathematical Society Lecture Note Series, 70. Cambridge University Press, Cambridge-New York, 1982.

- L. Flaminio, Local entropy rigidity for hyperbolic manifolds, *Comm. Anal. Geom.* **3** (1995), 555–596.
- P. Foulon and F. Labourie, Sur les variétés compactes asymptotiquement harmoniques, *Invent. Math.* **109** (1992), 97–111.
- L. Garnett, Foliations, the ergodic theorem and Brownian motion, *J. Funct. Anal.* **51** (1983), 285–311.
- Y. Guivarc'h, Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire, Astérisque 74 (1980), 47– 98.
- U. Hamenstädt, Harmonic measures for compact negatively curved manifolds, *Acta Math.* **178** (1997), 39–107.
- V. A. Kaimanovich, Brownian motion and harmonic functions on covering manifolds. An entropic approach, *Soviet Math. Dokl.* **33** (1986), 812–816.

- V. A. Kaimanovich, Brownian motion on foliations: entropy, invariant measures, mixing, *Funct. Anal. Appl.* **22** (1988).
- A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, *Publications Mathématiques de I'IHÉS* **51** (1980), 137–173.
- A. Katok, Entropy and closed geodesics, *Ergod. Th. & Dynam. Sys.* **2** (1982), 339–365.
- G. Knieper, Spherical means on compact Riemannian manifolds of negative curvature, *Differential Geometry and its Applications* **4** (1994), 361–390.
- F. Ledrappier and L. Shu, A family of stable diffusions, *arXiv preprint arXiv:1812.09708*.
- F. Ledrappier and L. Shu, Entropies for negatively curved manifolds, *arXiv preprint arXiv:1905.02747*.

- P. D. Liu and L. Shu, Absolute continuity of hyperbolic invariant measures for endomorphisms, *Nonlinearity* **24** (2011), 1596–1611.
- R. Mañé, A proof of Pesin's formula, *Ergod. Th. & Dynam. Sys.* 1 (1981), 95–102. Errata *Ergod. Th. & Dynam. Sys.* 3 (1983), 159–160.
- A. Manning, Topological entropy for geodesic flow, Ann. of Math. (2) **110** (1979), 567–573.
- G. A. Margulis, Certain measures associated with U-flows, *Funct. Anal. Appl.* **4** (1970), 55–67.
- Y. Yomdin, Volume growth and entropy, *Israel J. Math.* **57** (1987), 285–300.
- Y. Yomdin, C^k-resolution of semialgebraic mappings. Addendum to: "Volume growth and entropy", Israel J. Math. 57 (1987), 301–317.