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Möbius function, motivation for/to B-free

Möbius function µ(n):

µ(n) =

{
(−1)k , if n = p1p2 · pk for distinct primes pi ,

0, otherwise.

Square-free function η(n):

η(n) =

{
1, if n = p1p2 · pk for distinct primes pi ,

0, otherwise.

η(n) = ηB(n), where B = {m2 | m ∈ N}
(B = {p2 | p is a prime} suffices)
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B-free shifts and hereditary closure

B ⊂ N,

B · N - all multiples,

F(B) = N \ B · N - multiple-free set, elements are “B-free”.

Definition

Let ηB = 1F(B) ∈ {0, 1}N. The orbit closure XB ⊂ {0, 1}N of ηB is

called B-free shift (we consider shift map on {0, 1}N)

Definition

The hereditary closure of a set X ⊂ {0, 1}N is defined as follows:

X̃ = {(yn) ∈ {0, 1}N | ∃(xn) ∈ X , yn ≤ xn, n ∈ N}.

A set is hereditary if it coincides with its hereditary closure.
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A little bit more hierarchy for B-free sets

Theorem (consequence of CRT)

If B ⊂ N consists of pairwise coprime numbers, X̃B = XB.

There are many examples when XB ( X̃B. We introduce even larger
shifts:

X̃
(k)
B =

⋂
B′⊂B,#B′=k

X̃B′ , X̃ ∗B =
⋂

B′⊂B,B′ finite

X̃B′ .

All defined sets are closed, shift-invariant and hereditary. Moreover,

XB ⊂ X̃B ⊂ X̃ ∗B ⊂ . . . ⊂ X̃
(2)
B ⊂ X̃

(1)
B .

The set X̃
(1)
B is often called the B-admissible shift and its elements

B-admissible sequences. We can make even finer hierarchy, taking for
every countable anti-chain B in the powerset of B, the intersection of
X̃B′ , B′ ∈ B.
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In the literature, XB, X̃B and X̃
(1)
B have been studied. By the CRT, these

sets are all the same if B is infinite and consists of pairwise coprime
numbers.
On the other hand, examples of B for which the sets differ were
provided, see [A. Bartnicka, S. Kasjan, J. Kulaga-Przymus and M.
Lemanczyk, preprint].

We add X̃ ∗B to this picture.

Theorem

There exists B such that X̃ ∗B 6= X̃
(1)
B . There exists B such that

X̃ ∗B 6= X̃B.
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For a subshift X , we denote the set of all shift-invariant probability
measures by M(X ) and the set of all ergodic measures by Me(X ).

If not stated otherwise, we consider weak∗-topology on these sets.

Definition

We say that the ergodic measures of a subshift X are entropy-dense (in
the set of all shift-invariant measures), if for every µ ∈ M(X ) there
exists a sequence of ergodic measures νn such that

νn converges to µ in the weak∗-topology and

h(νn) converges to h(µ).

Theorem

For every B ⊂ N, the ergodic measures Me(X̃B) are entropy-dense in
the set M(X̃B). Moreover,

M(X̃B) = M(X̃ ∗B), M(X̃B) = M(X̃ ∗B).
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Known result

Theorem (J. Kulaga-Przymus, M. Lemanczyk and B. Weiss
2016)

For every B ⊂ N, the ergodic measures Me(X̃B) are dense in the set
M(X̃B).

On the other hand, density in the weak∗ topology does not ensure the
convergence of entropies. The entropy is not continuous w.r.t. the
topology.

Theorem (T. Downarowicz and S. Kasjan 2003)

For any Choquet simplex K and any u.s.c. affine f : K → [0,∞), there
exists an expansive dynamical system (X ,T ) (a Toeplitz flow) and an
affine homeomorphism π from M(X ,T ) to K such that h(µ) = f (π(µ)),
µ ∈ M(X ,T ).

Michal Kupsa (joint work with Dominik Kwietniak and Jakub Konieczny) Entropy density of ergodic measures for B-free shifts



Flowers all the time
Introduction

Entropy density

Our main tool is d̄-metric (more generally f̄ -metric):

d̄(x , y) = lim sup
n→∞

1

n

∑
0≤i<n

|xi − yi | x , y ∈ {0, 1}N,

d̄(µ, ν) = inf
η∈J(µ,ν)

∫
x,y

d̄(x , y)dη(x , y) µ, ν ∈ M
(
{0, 1}N

)
,

where J(µ, ν) is the set of all joinings of µ and ν.

We extend this distance/pseudo-distance onto sets in the following way:

d̄(X ,Y ) = max(sup
x∈X

inf
y∈Y

d̄(x , y), sup
y∈Y

inf
x∈X

d̄(x , y)),

d̄(M′,M′′) = max( sup
µ∈M′

inf
ν∈M′′

d̄(µ, ν), sup
ν∈M′′

inf
µ∈M′

d̄(µ, ν)),

where X ,Y are subsets of {0, 1}N and M′ and M′′ are subsets of
M
(
{0, 1}N

)
.
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Theorem (main scheme)

Suppose that X and Xk , k ∈ N are subshifts such that
d̄(Me(X ),Me(Xk)) goes to zero, and for every k ∈ N, the ergodic
measures Me(Xk) are entropy-dense in M(Xk). Then the ergodic
measure Me(X ) are entropy-dense in M(X ).

The assumptions can be changed using the following observations:

Proposition

For subshifts X ,Y ,

d̄(M(X ),M(Y )) = d̄(Me(X ),Me(Y )) ≤ d(X ,Y ).

d(x , y) = lim sup
n→∞

1

n

∑
0≤i<n

|xi − yi | x , y ∈ {0, 1}N,

d(X ,Y ) = max(sup
x∈X

inf
y∈Y

d(x , y), sup
y∈Y

inf
x∈X

d(x , y)), X ,Y ⊂ {0, 1}N.
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Lemma

For a finite B ⊂ N, X̃B is a transitive sofic shift, therefore its ergodic
measures are entropy-dense in M(X̃B).

Lemma
Let B, Bk ⊂ N, Bk be finite for every k ∈ N and B = ∪k Bk . Then
d(X̃Bk

, X̃B) goes to zero.

We use here Erdos-Davenport’s result on d and the logarithmic density of
integer sets.

To extend the results to X̃ ∗B, we use the fact that

d(X̃ ∗B, X̃Bk
) ≤ d(X̃B, X̃Bk

).
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Other scheme for d-metric

Theorem (decreasing scheme)

Suppose that Xk , k ∈ N, be a sequence of decreasing subshifts such that∑
k ∈ Nd̄(Me(Xk),Me(Xk+1)) goes to zero, and for every k ∈ N, the

ergodic measures Me(Xk) are entropy-dense in M(Xk). Put
X =

⋂
k∈N Xk . Then the ergodic measure Me(X ) are entropy-dense in

M(X ).
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