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Subshifts

Consider the full shift space in d-dimensions AZd
on a finite

alphabet A and the natural action of Zd on it.

Definition

Suppose X ⊂ AZd
is a closed set that is invariant under the Zd

action, then Zd acting on X is a topological Zd -subshift. The
automorphism group Aut(X , σ), is the group of all
homeomorphisms φ : X → X that commute with the Zd -action.

By the Curtis-Hedlund-Lyndon Theorem any automorphism
φ : X → X is given by a block code. An element x ∈ X is called
a coloring of Zd .
There are contributions to the study of Aut(X , σ) by a number of
authors including, but not limited to, M. Boyle, G. A. Hedlund,
M. Hochman, K. H. Kim, W. Krieger, D. Lind, M. Nasu,
F. W. Roush, D. Rudolph, J. Wagoner.
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Information propagation

Definition (cf. Boyle-Lind)

Given a subshift X we say a set A ⊂ Rd codes B ⊂ Rd if for
every x , y ∈ X with x(a) = y(a) for all a ∈ A ∩ Zd we also have
x(b) = y(b) for all b ∈ B ∩ Z d .

This is uninteresting if d = 1.

Proposition (Morse-Hedlund)
Suppose X is a one-dimensional shift. If A ⊂ Z is an interval
and A codes a disjoint set B ⊂ Z then X is finite.
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Expansive Subspaces

Suppose X ⊂ AZ2
is a topological Z2-subshift and H is a half

space in R2 bounded by a line L.

Definition (Expansive)

If H codes all of R2 we say H is expansive. If ` is a ray in L
whose orientation agrees with the orientation L inherits from H
and H is expansive we say that ` is an expansive ray. A ray or
halfspace which is not expansive is called nonexpansive.

This is slightly non-standard, cf. Boyle-Lind who define L to be
an expansive subspace if both the half spaces bounded by L
are expansive in our sense. For rational directions this is
equivalent to usual expansiveness of the sub subdynamics in
that direction.
Boyle-Maass and Cyr-Kra consider one-sided expansiveness.
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The Ledrappier example: d = 2.

Definition

Let X ⊂ {0,1}Z2
be the set of {0,1} colorings of Z2 such that

for all x ∈ X and all (i , j) ∈ Z2

x(i , j) + x(i + 1, j) + x(i , j + 1) ≡ 0 mod (2)

Note that any two of {x(i , j), x(i + 1, j), x(i , j + 1)} code the third.
Any horizontal line codes the horizontal line above it, but not
the horizontal line below it.
The negative x-axis is (or the half space below it) is expansive,
but the upper half space is nonexpansive.
Theme: Information propagation is controlled by the
geometry of the nonexpansive spaces.
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Expansiveness: d = 2.

Observation

Since a shift X is invariant under the Z2 action, it follows that for
every v ∈ Z2, if A codes B then A + v codes B + v.

Lemma

If A ⊂ H codes b ∈ Z2 \ H then H codes all of R2 so H is
expansive. In this case there is a finite subset A0 ⊂ A such that
A0 codes b.

Corollary (cf. Boyle-Lind)

In the space of one-dimensional rays in R2, being expansive is
an open condition and nonexpansive a closed one.
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The spacetime of an automorphism/endomorphism

Definition

If φ ∈ Aut(X , σ) is an automorphism (i.e. φ ◦ σ = σ ◦ φ) its
φ-spacetime U = U(φ) is a Z2-system, together with a preferred
basis for Z2. The set U = U(φ) is the closed subset of ΣZ2

defined by x ∈ U if and only if there is x0 ∈ X with
φj(x0)[i] = x(i , j) for all (i , j) ∈ Z2. The preferred basis consists
of (1,0), the “horizontal” and (0,1) the“vertical.”

Note that (1,0) acts on U by shifting on each (horizontal) row
and the action of (0,1) can be thought of as a vertical shift or
as applying φ to each row.
This concept with different terminology was introduced by
Milnor.
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The spacetime of an automorphism/endomorphism

For many questions there is no loss of generality in assuming a
Z2-subshift is the spacetime of an automorphism.

Proposition

If X is a Z2-subshift which has an expansive one-dimensional
subspace L then X is isomorphic to a spacetime of an
automorphism with L as “horizontal”.
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The light cone

What is coded by a half line?

Definition
If φ ∈ Aut(Y , σ) and n ≥ 0, we say B is φ-coded by A ⊂ Y
provided x , y agreeing on A implies φ(x), φ(y) agree on B. Let
W+(n, φ) be the smallest element of Z such that the ray
[W+(n, φ),∞) is φn-coded by [0,∞). W−(n, φ) is defined
similarly.

In other words if x and y agree on [0,∞), then φn(x) and φn(y)
agree on [W+(n, φ),∞) and this is the largest ray with that
property.
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The light cone

Definition (Light Cone)
The future light cone Cf (φ) of φ is defined to be

Cf (φ) = {(i , j) ∈ Z2 : W−(j , φ) ≤ i ≤W+(j , φ), j ≥ 0}

The past light cone Cp(φ) of φ is defined to be Cp(φ) = −Cf (φ).
The full light cone C(φ) is defined to be Cf (φ) ∪ Cp(φ).

The rationale for this terminology is that if x ∈ X and j > 0, then
a change in the value of x(0) (with no other changes) can only
cause a change in φj(x)[i] if (i , j) lies in the future light cone of
φ. Similarly a change in the value of φ−j(x)[i] can only affect
x [0] if (i , j) lies in the past light cone of φ.

Note: There is no simple relation between C(φ) and C(φ−1) .
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The asymptotic light cone

The integers W+(n) and W−(n) are subadditive so Fekete’s

Lemma implies the limits lim
n→∞

W+(n)

n
and lim

n→∞

W−(n)

n
exist.

Definition

We define

α+(φ) := lim
n→∞

W+(n)

n
and

α−(φ) := lim
n→∞

W−(n)

n
.
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The asymptotic light cone

Definition
The asymptotic light cone of φ is defined to be

A(φ) = {(u, v) ∈ R2 : α−(φ)v ≤ u ≤ α+(φ)v}.

Question
Does there exist a subshift of finite type (X , σ) and an
automorphism φ ∈ Aut(X ) such that an edge of the asymptotic
light cone of φ has irrational slope? If so, what set of slopes is
achievable?

There are only countably many shifts of finite type, and
countably many automorphisms for each, so there are only
countably many asymptotic light cones. In particular, all
irrational slopes cannot be realized.
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Asymptotic light cone edges

Recall the theme: Information propagation is controlled by the
geometry of the nonexpansive spaces.

Theorem (Cyr, F., Kra)
The edges of the asymptotic light cone are nonexpansive
subspaces.

Conversely, if L is a subspace in the frontier of the expansive
subspaces it is (after change of co-ordinates and recoding), the
edge of the asymptotic light cone of an automorphism.
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The asymptotic spread

Let A(φ) be the length of the smallest interval containing
0, α−(φ) and α+(φ). It is called the asymptotic spread.

Theorem (V. Cyr, J. F., B. Kra)

If φ ∈ Aut(X ), then the topological entropies h(φ) and h(σ),
satisfy

h(φ) ≤ A(φ)h(σ),

An earlier similar result for automorphisms of the full shift
preserving the uniform measure was proved by P. Tisseur
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What groups can be subgroups of Aut(X , σ)?

Proposition (Cyr, F, Kra, Petite)
The following groups cannot be isomorphic to subgroups of
Aut(X , σ), if h(σ) = 0.

SL(k ,Z) for any k ≥ 3
SL(2,Z[1/p]), for any prime p
The Baumslag-Solitar group G = 〈a,b : bab−1 = an〉.
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Polygonal subshifts (joint with Kra)

Suppose X is a Z2-subshift, P is a convex polygon with vertices
in Z2, and v is a vertex of P. If P \ {v} X -codes {v}, then we
say that P is a coding polygon for the vertex v . Note that the
assumption that P \ {v} codes {v} implies that
(P + u) \ {v + u} X -codes {v + u} for all u ∈ Z2.)

Definition

A Z2-subshift X is polygonal with respect to a convex polygon
P ⊂ R2 if the vertices of P lie in Z2 and P is a coding polygon
for each of its vertices.
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Polygonal examples

The Ledrappier example L is polygonal with respect to P,
the triangle with vertices {(0,0), (1,0), (0,1)}. Also a
non-abelian analog with A any finite group.
Einsiedler has shown there are closed Z2-invariant
subsystems of L realizing all horizontal directional
entropies in [0, ln(2)].
Suppose X is polygonal with respect to P it is polygonal
with respect to nP for n ≥ 1.
The Cartesian product of two polygonal shifts with different
polygons.
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Polygonal Z2-subshifts

Observation
If X is polygonal with respect to P then every subspace which
is not parallel to a side of P is expansive. Moreover if P has no
two parallel edges then every (positively oriented) edge of P
determines a positively expansive ray for X of P.
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Closing rays

Definition
Suppose H is an open nonexpansive half space with boundary
L and ` ⊂ L is the corresponding nonexpansive ray. We say H
and ` are closing if ` is rational and there is an N > 0 such any
block B of length N in L ∩ Z2 has the property that B ∪ H codes
L.

Example: The positive x-axis in the Ledrappier example.
The name comes from the fact that for S a spacetime of an
endomorphism φ, the upper half space (and positive x-axis) are
closing if the endomorphism φ is right and left closing in the
sense of symbolic dynamics.

John Franks Nonexpansiveness in Z 2 symbolic dynamics



Closing rays

Definition
Suppose H is an open nonexpansive half space with boundary
L and ` ⊂ L is the corresponding nonexpansive ray. We say H
and ` are closing if ` is rational and there is an N > 0 such any
block B of length N in L ∩ Z2 has the property that B ∪ H codes
L.

Example: The positive x-axis in the Ledrappier example.
The name comes from the fact that for S a spacetime of an
endomorphism φ, the upper half space (and positive x-axis) are
closing if the endomorphism φ is right and left closing in the
sense of symbolic dynamics.
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Characterizing polygonal systems

Suppose X is a Z2 subshift. with only finitely many
nonexpansive rays. We call this the nonexpansive ray set for X .

Theorem ( J. F., B. Kra)

Suppose X is a Z2 subshift. Then X is isomorphic to a
polygonal shift iff X has only finitely many nonexpansive
subspaces and they are rational and closing.

In particular the the geometry of the nonexpansive rays
determines the geometry of the the polygon, e.g. the number of
sides and the angles they make with the axes.
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Directional entropy

Definition

If X is a Z2-subshift and v ∈ Z2 then the directional entropy
hv (x) in direction v is the topological entropy hv of Tv the
element of the Z2 action on X determined by v. It can be
extended by homogeneity to all of Q2 and by continuity to all of
R2. The entropy semi-norm on R2 is defined by ‖v‖X = hv (X ).

Proposition ( Milnor)

If X is a Z2-subshift which is polygonal then ‖v‖X is either
identically 0 or a norm. If X ,Y are triangular with the same
triangle and non-trivial semi-norms then there is a constant c
such that ‖v‖X = c‖v‖Y .
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Directional entropy

Proposition ( J. F., B. Kra)

Suppose X is a polygonal Z2-subshift with rational polygon P.
has no parallel sides. Then if F(P) is the family of all
Z2-subshifts which are polygonal with respect to P and which
have nontrivial entropy norms, then F(P) is a quasi-conformal
family, i.e. there is a uniform dilatation constant D > 0,
depending only on P, which has the property that for any
u, v ∈ S1 we have

1
D
≤ hu(X )

hv (X )
≤ D.

for all X ∈ F(P).
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