Folding points and endpoints of chainable continua

Jernej Činč

IT4Innovations Ostrava and AGH Krakow

Conference celebrating 70th birthday of Michał Misiurewicz, Krakow, 13.06.2019

Joint work with Lori Alvin (Furman University), Ana Anušić (USP) and Henk Bruin (University of Vienna)

Figure: Hemerocallis lilioasphodelus (rumena maslenica)

Introduction

Let $I:=[0,1]$ and let
The tent map family $T_{s}(x):=\left\{\begin{array}{l}s x, x \in[0,1 / 2] \\ s(1-x), x \in[1 / 2,1]\end{array}\right.$

for $s \in(0,2]$, where c denotes the critical point of T_{s}.

Inverse limit spaces

We define the inverse limit space $X_{s}=\underset{\swarrow}{\lim }\left(T_{s}, I\right)$ with a single bonding map T_{s} by

$$
X_{s}:=\left\{x:=\left(x_{0}, x_{1}, x_{2}, x_{3}, \ldots\right) \in I^{\infty} ; T_{s}\left(x_{n-1}\right)=x_{n}, \forall n \in \mathbb{N}\right\}
$$

equipped with a metric

$$
d(x, y):=\sum_{i \geq 0} \frac{\left|x_{i}-y_{i}\right|}{2^{i}}
$$

for every $x, y \in X_{s}$. and the shift homeomorphism $\sigma: X_{s} \rightarrow X_{s}$, defined by

$$
\sigma\left(\left(x_{0}, x_{1}, x_{2}, \ldots\right)\right):=\left(T_{s}\left(x_{0}\right), T_{s}\left(x_{1}\right), T_{s}\left(x_{2}\right), \ldots\right)
$$

and coordinate projections $\pi_{n}: X_{s} \rightarrow I$ by $\pi_{n}(x):=x_{n} \forall n \in \mathbb{N}_{0}$.

Tent inverse limit spaces

A space is called a continuum if it is a compact connected metric space. Denote by $\left[c_{2}, c_{1}\right]$ the core of T_{s}, where $c_{k}:=T^{k}(c)$.
$\longrightarrow X_{s}$ chainable continua ($\forall \epsilon>0 \exists \epsilon$-mapping from X_{s} to I and thus X_{s} planar and $X_{s}=\mathcal{C} \cup X_{s}^{\prime}=\lim _{\leftrightarrows}\left(\left[c_{2}, c_{1}\right], T_{s}\right) \forall s \in(\sqrt{2}, 2)$ and \mathcal{C} is a ray (Bing, Bennet (1960's)).

How to think about spaces X_{s} ?

\longrightarrow Fat maps

How to think about spaces X_{s} ?
\longrightarrow Fat maps

Figure: Continuum X_{2}

How to think about spaces X_{s} ?
\longrightarrow Fat maps

Figure: Continuum X_{2}
\longrightarrow Thm(Barge, Bruin,Š̌timac, 2013): $\forall s \neq s^{\prime} \in(\sqrt{2}, 2]$, then $X_{s} \not 千 X_{s^{\prime}}$.

Why are X_{s} interesting to study?

- X_{s} are for some s homeomorphic to global attractors of planar diffeomorphisms (Hénon maps $H_{a, b}(x, y) \longmapsto\left(1-a x^{2}+y, b x\right)$ for some $a \in[1,2]$ and b small - Barge \& Holte (1995))
- X_{s} as a global attracting sets Λ of a plane homeomorphism H such that $\left.H\right|_{\wedge}$ and σ are topologically conjugate (e.g. Barge \& Martin, (1990), Boyland, de Carvalho \& Hall (2012))
- simplest parametrized family (containing folding points) plane non-separating one-dimensional attractors.

Folding points and endpoints of a chainable continuum K

Folding points $\mathcal{F} \subset K$: points with a neigb. $\not \approx C \times(0,1)$ where C is a totally disconnected set.

Endpoints $\mathcal{E} \subset K$: points $x \in K$ s.t. $\forall A, B \subset K$ subcontinua containing x it hold that $A \subset B$ or $B \subset A$.

Folding points and endpoints of a chainable continuum K

Folding points $\mathcal{F} \subset K$: points with a neigb. $\not \approx C \times(0,1)$ where C is a totally disconnected set.

Endpoints $\mathcal{E} \subset K$: points $x \in K$ s.t. $\forall A, B \subset K$ subcontinua containing x it hold that $A \subset B$ or $B \subset A$.

Figure: Knaster continuum X_{2}

Folding points and endpoints a chainable continuum K

Folding points $\mathcal{F} \subset K$: points with a neigb. $\not \approx C \times(0,1)$ where C is a totally disconnected set.

Endpoints $\mathcal{E} \subset K$: points $x \in K$ s.t. $\forall A, B \subset K$ subcontinua containing x it hold that $A \subset B$ or $B \subset A$.

Figure: Continuum $X_{\sqrt{2}}$

What is $\mathcal{F} \subset X_{s}$ depending on s ?

$$
\begin{aligned}
& x_{2} \ldots \exists x \in \mathcal{E} \\
& x_{\sqrt{2}} \ldots \exists x \in \mathcal{F} \backslash \mathcal{E}
\end{aligned}
$$

\longrightarrow Thm (Barge, Martin (1994)): Say $s \in(\sqrt{2}, 2)$. If c is (pre)periodic with (pre)period n then X_{s}^{\prime} has n points in $\mathcal{E}(\mathcal{F} \backslash \mathcal{E})$.

What is $\mathcal{F} \subset X_{s}$ depending on s ?

$$
\begin{aligned}
& x_{2} \ldots \exists x \in \mathcal{E} \\
& x_{\sqrt{2}} \ldots \exists x \in \mathcal{F} \backslash \mathcal{E}
\end{aligned}
$$

\longrightarrow Thm (Barge, Martin (1994)): Say $s \in(\sqrt{2}, 2)$. If c is (pre)periodic with (pre)period n then X_{s}^{\prime} has n points in $\mathcal{E}(\mathcal{F} \backslash \mathcal{E})$.
\longrightarrow Thm (Barge, Brucks, Diamond (1996)): For a dense G_{δ} set of parameters from $[\sqrt{2}, 2]$ it holds that every open set in X_{s}^{\prime} contains a homeomorphic copy of every tent inverse limit space (also with varying bonding maps).

Representation of X_{s}

$A \subset X_{s}$ is basic arc if $\pi_{0}(A)$ maximal injective s.t $x \in A \subset X$.

Folding points $\mathcal{F} \backslash \mathcal{E}$ and endpoints $\mathcal{E}=\mathcal{E}_{F} \cup \mathcal{E}_{S} \cup \mathcal{E}_{N}$

$\mathcal{F} \backslash \mathcal{E}$-non-end folding point $\quad \mathcal{E}_{F}$-flat endpoint

\mathcal{E}_{S}-spiral endpoint

\mathcal{E}_{N}-nasty endpoint

Folding points $\mathcal{F} \backslash \mathcal{E}$ and endpoints $\mathcal{E}=\mathcal{E}_{F} \cup \mathcal{E}_{S} \cup \mathcal{E}_{N}$

$\mathcal{F} \backslash \mathcal{E}$-non-end folding point $\quad \mathcal{E}_{F}$-flat endpoint

\mathcal{E}_{S}-spiral endpoint

\mathcal{E}_{N}-nasty endpoint

Folding points $\mathcal{F} \backslash \mathcal{E}$ and endpoints $\mathcal{E}=\mathcal{E}_{F} \cup \mathcal{E}_{S} \cup \mathcal{E}_{N}$

$\mathcal{F} \backslash \mathcal{E}$-non-end folding point $\quad \mathcal{E}_{F}$-flat endpoint

\mathcal{E}_{S}-spiral endpoint

\mathcal{E}_{N}-nasty endpoint

Folding points $\mathcal{F} \backslash \mathcal{E}$ and endpoints $\mathcal{E}=\mathcal{E}_{F} \cup \mathcal{E}_{S} \cup \mathcal{E}_{N}$

$\mathcal{F} \backslash \mathcal{E}$-non-end folding point $\quad \mathcal{E}_{F}$-flat endpoint

\mathcal{E}_{S}-spiral endpoint

\mathcal{E}_{N}-nasty endpoint

Thm (Alvin, Anušić, Bruin, Č., 2019): Say that orb(c) is infinite. Then, the sets $\mathcal{F} \backslash \mathcal{E}, \mathcal{E}_{F}, \mathcal{E}_{S}, \mathcal{E}_{N}$ are dense, whenever non-empty.

Open questions

Q1: Let c recurrent and $\operatorname{Orb}(c)$ infinite. Are $\mathcal{E}_{S}, \mathcal{E}_{N}, \mathcal{E}_{F}$ uncountable when non-empty?

Q2: (Boyland, de Carvalho, Hall, 2017) Say $\omega(c)=\left[c_{2}, c_{1}\right]$. Which of $\mathcal{E}_{S}, \mathcal{E}_{N}$ is topologically typical?

Q3: Say $\omega(c) \neq\left[c_{2}, c_{1}\right]$. Can there exist $x \in \mathcal{E}_{N}$?

When $\mathcal{F}=\mathcal{E}$ in X_{s}^{\prime} ?

\longrightarrow Let $s \in(\sqrt{2}, 2)$. Then $\exists x \in \mathcal{E} \subset X_{s}^{\prime} \Longleftrightarrow c$ is recurrent. (Barge, Martin 1994)
$\longrightarrow x \in \mathcal{F} \subset X_{s}^{\prime} \Longleftrightarrow \forall k \in \mathbb{N} \pi_{k}(x) \in \omega(c)$ (Raines 2006)
\longrightarrow If $Q(k) \rightarrow \infty$ and $\left.T_{s}\right|_{\omega(c)}$ bijective $\Longrightarrow \mathcal{F}=\mathcal{E}$ but \nLeftarrow (Alvin
\& Brucks 2011, Alvin 2013)

Persistent recurrence

Def: Let $x=\left(x_{0}, x_{1}, \ldots\right) \in X_{s}^{\prime}$ and let $J \subset I$ be an interval. The sequence $\left(J_{n}\right)_{n \in \mathbb{N}_{0}}$ of intervals is called a pull-back of J along x if $J=J_{0}, x_{k} \in J_{k}$ and J_{k+1} is the largest interval such that $T_{s}\left(J_{k+1}\right) \subset J_{k}$ for all $k \in \mathbb{N}_{0}$. A pull-back is monotone if $c \notin \operatorname{Int}\left(J_{n}\right)$ for every $n \in \mathbb{N}$.

Def (Blokh, Lyubich (1991)): Let c be recurrent. The critical point c is reluctantly recurrent if there is $\varepsilon>0$ and an arbitrary long (but finite!) backward orbit $\bar{y}=\left(y, y_{1}, \ldots, y_{l}\right)$ in $\omega(c)$ such that the ε-neighbourhood of $y \in I$ has monotone pull-back along \bar{y}. Otherwise, c is persistently recurrent.

Result

Lemma: Let $y \in \omega(c), y \in \operatorname{Int}(J)$ where $J \subset I$ and assume that for every $i \in \mathbb{N}$ the set J can be monotonically pulled-back along $c_{n_{i}+1}, \ldots, c_{1}$, where $J \ni c_{n_{i}+1} \neq y$. Then J can be monotonically pulled-back along some infinite backward orbit y, y_{1}, y_{2}, \ldots, where $y_{i} \in \omega(c)$ for every $i \in \mathbb{N}$.

Theorem: (Alvin, Anušić, Bruin, Č., 2019) $\mathcal{F}=\mathcal{E} \subset X_{s}^{\prime} \Longleftrightarrow c$ is persistently recurrent.

Problems with generalisation on chainable continua K

Def: A point $x \in K$ is a Lelek endpoint if it is endpoint of every arc containing K.
\longrightarrow Let $x \in X_{s}^{\prime}$. Point x is a Lelek endpoint $\Longleftrightarrow x$ is a standard endpoint.

Problems with generalisation on chainable continua K

Def: A point $x \in K$ is a Lelek endpoint if it is endpoint of every arc containing K.
\longrightarrow Let $x \in X_{s}^{\prime}$. Point x is a Lelek endpoint $\Longleftrightarrow x$ is a standard endpoint.

Monotone pullbacks possible if e.g. there are no double spirals as subcontinua in the continuum K.

Thank you!

