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Figure: Hemerocallis lilioasphodelus (rumena maslenica)



Introduction

Let / :=[0,1] and let

The tent map family Ts(x) :

sx,x € [0,1/2]
s(1 —x),x €[1/2,1]

0 1

for s € (0, 2], where ¢ denotes the critical point of Ts.



Inverse limit spaces

We define the inverse limit space Xs = M(Ts, 1) with a single
bonding map T by

Xs = {x = (x0,x1, %2, X3,...) € [°°; Ts(xp—1) = xp, ¥ n € N},

equipped with a metric
xi — yil
d = —_—
(X7.y) Z 2,
i>0
for every x,y € X;.
and the shift homeomorphism o : Xs — Xs, defined by
o((x0, x1,x2,...)) = (Ts(x0), Ts(x1), Ts(x2),-..)

and coordinate projections 7, 1 Xs — | by mp(x) := x, Vn € Np.



Tent inverse limit spaces

A space is called a continuum if it is a compact connected metric
space. Denote by [c2, c1] the core of Ty, where ¢, := T*(c).

— Xs chainable continua (Ve > 0 Je-mapping from X to / and
thus X, planar and Xs = CU X! = lim([e2, 1], Ts) Vs € (v/2,2)
and C is a ray (Bing, Bennet (1960’s)).




How to think about spaces X7

— Fat maps
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— Fat maps

Figure: Continuum X5

— Thm(Barge, Bruin,Stimac, 2013): Vs £ ¢’ € (\/5, 2], then
Xs o Xor.

[m]
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Why are X; interesting to study?

» X, are for some s homeomorphic to global attractors of planar
diffeomorphisms (Hénon maps H, p(x, y) — (1 — ax? +y, bx)
for some a € [1,2] and b small - Barge & Holte (1995))

» X, as a global attracting sets A of a plane homeomorphism H
such that H|x and o are topologically conjugate (e.g. Barge &
Martin, (1990), Boyland, de Carvalho & Hall (2012))

» simplest parametrized family (containing folding points) plane
non-separating one-dimensional attractors.



Folding points and endpoints of a chainable continuum K

Folding points F C K: points with a neigh. Z C x (0,1) where C
is a totally disconnected set.

Endpoints £ C K: points x € K s.t. YA, B C K subcontinua
containing x it hold that AC B or B C A.
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What is F C X depending on s7

Xo..dxeé&

X5-3x€F\E

—Thm (Barge, Martin (1994)): Say s € (v/2,2). If c'is
(pre)periodic with (pre)period n then X! has n points in £ (F\ ).



What is F C X depending on s7

Xo..dxeé&

X5-3x€F\E

—Thm (Barge, Martin (1994)): Say s € (v/2,2). If c'is
(pre)periodic with (pre)period n then X! has n points in £ (F\ ).

—Thm (Barge, Brucks, Diamond (1996)): For a dense Gs set of
parameters from [v/2,2] it holds that every open set in X/ contains
a homeomorphic copy of every tent inverse limit space (also with
varying bonding maps).



Representation of X

A C Xs is basic arc if mo(A) maximal injective s.t x € A C X.

—)




Folding points F \ € and endpoints £ = EF U Es U Ey
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Folding points F \ € and endpoints £ = EF U Es U Ey

F \ € -non-end folding point  Ef -flat endpoint
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Thm (Alvin, Anusi¢, Bruin, o 2019): Say that orb(c) is infinite.
Then, the sets F\ &, EF, Es, En are dense, whenever non-empty.



Open questions

Q1: Let c recurrent and Orb(c) infinite. Are &s, En, EF
uncountable when non-empty?

Q2: (Boyland, de Carvalho, Hall, 2017) Say w(c) = [c2, c1]. Which
of s, En is topologically typical?

Q3: Say w(c) # [z, c1]. Can there exist x € En7?



When F = & in X7

— Let s € (v/2,2). Then Ix € £ C X, <= c is recurrent.
(Barge, Martin 1994)

— x € F C X, < Vk € Nm(x) € w(c) (Raines 2006)

— If Q(k) — oo and Tl () bijective = F = & but < (Alvin
& Brucks 2011, Alvin 2013)



Persistent recurrence

Def: Let x = (xp, x1,...) € X, and let J C | be an interval. The
sequence (Jp)nen, of intervals is called a pull-back of J along x if
J =y, xx € Jx and Jyy1 is the largest interval such that
Ts(Jk+1) C Ji for all k € Ng. A pull-back is monotone if

¢ ¢ Int(J,) for every n € N.

Def (Blokh, Lyubich (1991)): Let c be recurrent. The critical point
c is reluctantly recurrent if there is € > 0 and an arbitrary long (but
finite!) backward orbit ¥y = (y, y1,...,ys) in w(c) such that the
e-neighbourhood of y € | has monotone pull-back along y.
Otherwise, c is persistently recurrent.



Result

Lemma: Let y € w(c), y € Int(J) where J C | and assume that for
every i € N the set J can be monotonically pulled-back along
Cni+1,---,C1, where J 3 ¢p 41 # y. Then J can be monotonically
pulled-back along some infinite backward orbit y, y1, y», ..., where
yi € w(c) for every i € N.

Theorem: (Alvin, Anusi¢, Bruin, C., 2019) F =€ C X! <= c'is
persistently recurrent.



Problems with generalisation on chainable continua K

Def: A point x € K is a Lelek endpoint if it is endpoint of every arc
containing K.

— Let x € X/. Point x is a Lelek endpoint <= x is a standard
endpoint.



Problems with generalisation on chainable continua K

Def: A point x € K is a Lelek endpoint if it is endpoint of every arc
containing K.

— Let x € X/. Point x is a Lelek endpoint <= x is a standard
endpoint.

Monotone pullbacks possible if e.g. there are no double spirals as
subcontinua in the continuum K .



Thank youl
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