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Figure: Hemerocallis lilioasphodelus (rumena maslenica)



Introduction

Let I := [0, 1] and let

The tent map family Ts(x) :=

{
sx , x ∈ [0, 1/2]

s(1− x), x ∈ [1/2, 1]
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for s ∈ (0, 2], where c denotes the critical point of Ts .



Inverse limit spaces

We de�ne the inverse limit space Xs = lim←−(Ts , I ) with a single
bonding map Ts by

Xs := {x := (x0, x1, x2, x3, . . .) ∈ I∞;Ts(xn−1) = xn, ∀ n ∈ N},

equipped with a metric

d(x , y) :=
∑
i≥0

|xi − yi |
2i

for every x , y ∈ Xs .
and the shift homeomorphism σ : Xs → Xs , de�ned by

σ((x0, x1, x2, . . .)) := (Ts(x0),Ts(x1),Ts(x2), . . .)

and coordinate projections πn : Xs → I by πn(x) := xn ∀n ∈ N0.



Tent inverse limit spaces

A space is called a continuum if it is a compact connected metric
space. Denote by [c2, c1] the core of Ts , where ck := T k(c).

−→ Xs chainable continua (∀ε > 0 ∃ε-mapping from Xs to I and
thus Xs planar and Xs = C ∪ X ′s = lim←−([c2, c1],Ts) ∀s ∈ (

√
2, 2)

and C is a ray (Bing, Bennet (1960's)).

c2 c1c1c2 c1c2



How to think about spaces Xs?

−→ Fat maps

Figure: Continuum X2

−→ Thm(Barge, Bruin,�timac, 2013): ∀s 6= s ′ ∈ (
√
2, 2], then

Xs 6' Xs′ .
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Why are Xs interesting to study?

I Xs are for some s homeomorphic to global attractors of planar
di�eomorphisms (Hénon maps Ha,b(x , y) 7−→ (1− ax2 + y , bx)
for some a ∈ [1, 2] and b small - Barge & Holte (1995))

I Xs as a global attracting sets Λ of a plane homeomorphism H
such that H|Λ and σ are topologically conjugate (e.g. Barge &
Martin, (1990), Boyland, de Carvalho & Hall (2012))

I simplest parametrized family (containing folding points) plane
non-separating one-dimensional attractors.



Folding points and endpoints of a chainable continuum K

Folding points F ⊂ K : points with a neigb. 6h C × (0, 1) where C
is a totally disconnected set.

Endpoints E ⊂ K : points x ∈ K s.t. ∀A,B ⊂ K subcontinua
containing x it hold that A ⊂ B or B ⊂ A.

Figure: Knaster continuum X2
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What is F ⊂ Xs depending on s?

X2...∃ x ∈ E

X√
2
...∃ x ∈ F \ E

−→Thm (Barge, Martin (1994)): Say s ∈ (
√
2, 2). If c is

(pre)periodic with (pre)period n then X ′s has n points in E (F \ E).

−→Thm (Barge, Brucks, Diamond (1996)): For a dense Gδ set of
parameters from [

√
2, 2] it holds that every open set in X ′s contains

a homeomorphic copy of every tent inverse limit space (also with
varying bonding maps).
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Representation of Xs

A ⊂ Xs is basic arc if π0(A) maximal injective s.t x ∈ A ⊂ X .



Folding points F \ E and endpoints E = EF ∪ ES ∪ EN

F \ E -non-end folding point EF -�at endpoint

ES -spiral endpoint EN -nasty endpoint

Thm (Alvin, Anu²i¢, Bruin, �., 2019): Say that orb(c) is in�nite.
Then, the sets F \ E , EF , ES , EN are dense, whenever non-empty.
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Open questions

Q1: Let c recurrent and Orb(c) in�nite. Are ES , EN , EF
uncountable when non-empty?

Q2: (Boyland, de Carvalho, Hall, 2017) Say ω(c) = [c2, c1]. Which
of ES , EN is topologically typical?

Q3: Say ω(c) 6= [c2, c1]. Can there exist x ∈ EN?



When F = E in X ′s?

−→ Let s ∈ (
√
2, 2). Then ∃x ∈ E ⊂ X ′s ⇐⇒ c is recurrent.

(Barge, Martin 1994)

−→ x ∈ F ⊂ X ′s ⇐⇒ ∀k ∈ N πk(x) ∈ ω(c) (Raines 2006)

−→ If Q(k)→∞ and Ts |ω(c) bijective =⇒ F = E but : (Alvin
& Brucks 2011, Alvin 2013)



Persistent recurrence

Def: Let x = (x0, x1, . . .) ∈ X ′s and let J ⊂ I be an interval. The
sequence (Jn)n∈N0

of intervals is called a pull-back of J along x if
J = J0, xk ∈ Jk and Jk+1 is the largest interval such that
Ts(Jk+1) ⊂ Jk for all k ∈ N0. A pull-back is monotone if
c 6∈ Int(Jn) for every n ∈ N.

Def (Blokh, Lyubich (1991)): Let c be recurrent. The critical point
c is reluctantly recurrent if there is ε > 0 and an arbitrary long (but
�nite!) backward orbit ȳ = (y , y1, . . . , yl) in ω(c) such that the
ε-neighbourhood of y ∈ I has monotone pull-back along ȳ .
Otherwise, c is persistently recurrent.



Result

Lemma: Let y ∈ ω(c), y ∈ Int(J) where J ⊂ I and assume that for
every i ∈ N the set J can be monotonically pulled-back along
cni+1, . . . , c1, where J 3 cni+1 6= y . Then J can be monotonically
pulled-back along some in�nite backward orbit y , y1, y2, . . ., where
yi ∈ ω(c) for every i ∈ N.

Theorem: (Alvin, Anu²i¢, Bruin, �., 2019) F = E ⊂ X ′s ⇐⇒ c is
persistently recurrent.



Problems with generalisation on chainable continua K

Def: A point x ∈ K is a Lelek endpoint if it is endpoint of every arc
containing K .

−→ Let x ∈ X ′s . Point x is a Lelek endpoint ⇐⇒ x is a standard
endpoint.

Monotone pullbacks possible if e.g. there are no double spirals as
subcontinua in the continuum K .
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Thank you!
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