Zigzags in interval inverse limits

Ana Anušić
University of São Paulo, Brazil

Conference on Dynamical Systems Celebrating Michał Misiurewicz's 70th Birthday Kraków, Poland, June 10-14, 2019

Heliconia rostrata (false bird of paradise or lobster claw)

Inverse limits on intervals

Let $I=[0,1]$ be the unit interval.
For $i \in \mathbb{N}$ let $f_{i}: l \rightarrow I$ be continuous (surjection).

$$
I \stackrel{f_{1}}{\leftarrow} I \stackrel{f_{2}}{\leftarrow} I \stackrel{f_{3}}{\leftarrow} / \stackrel{f_{4}}{\leftarrow} / \stackrel{f_{5}}{\leftarrow} / \ldots
$$

The inverse limit space of the inverse system $\left\{I, f_{i}\right\}_{i \in \mathbb{N}}$ is:

$$
X=\lim _{幺}\left\{I, f_{i}\right\}=\left\{\left(x_{0}, x_{1}, x_{2}, x_{3}, \ldots\right): f_{i}\left(x_{i}\right)=x_{i-1}\right\} \subset I^{\infty},
$$

with the product topology.
Coordinate projections $\pi_{i}: X \rightarrow I, \pi_{i}\left(\left(x_{0}, x_{1}, x_{2}, \ldots\right)\right)=x_{i}$.
X is a continuum (compact, connected, metric), and chainable (admits arbitrary small covers whose nerves are arcs).

Unimodal inverse limits $X_{s}=\operatorname{ljm}\left\{I, T_{s}\right\}$

$$
T_{s}: I \rightarrow I, T_{s}(x)=\min \{s x, s(1-x)\}, s \in[0,2] .
$$

Planar embeddings

Theorem (Bing 1951)
Every chainable continuum can be embedded in the plane.

Planar embeddings

Theorem (Bing 1951)

Every chainable continuum can be embedded in the plane.
Planar embeddings with specific properties?

Planar embeddings

Theorem (Bing 1951)

Every chainable continuum can be embedded in the plane.
Planar embeddings with specific properties?
A point $x \in X \subset \mathbb{R}^{2}$ is called accessible if there is an $\operatorname{arc} A \subset \mathbb{R}^{2}$ such that $A \cap X=\{x\}$.

Planar embeddings

A point $x \in X \subset \mathbb{R}^{2}$ is called accessible if there is an $\operatorname{arc} A \subset \mathbb{R}^{2}$ such that $A \cap X=\{x\}$.

Open question(Nadler and Quinn 1972)
Given a chainable continuum X and $p \in X$, is it possible to embed X in the plane such that p is accessible?

Planar embeddings

A point $x \in X \subset \mathbb{R}^{2}$ is called accessible if there is an $\operatorname{arc} A \subset \mathbb{R}^{2}$ such that $A \cap X=\{x\}$.

Open question(Nadler and Quinn 1972)

Given a chainable continuum X and $p \in X$, is it possible to embed X in the plane such that p is accessible?

Yes if bonding maps are zigzag-free (A, Bruin, Činč 2018).

Planar embeddings

A point $x \in X \subset \mathbb{R}^{2}$ is called accessible if there is an $\operatorname{arc} A \subset \mathbb{R}^{2}$ such that $A \cap X=\{x\}$.

Open question(Nadler and Quinn 1972)

Given a chainable continuum X and $p \in X$, is it possible to embed X in the plane such that p is accessible?

Yes if bonding maps are zigzag-free (A, Bruin, Činč 2018).
Specially, yes for unimodal inverse limits (A, Bruin, Činč 2016).

Zigzags

Let $f: I \rightarrow I$ be a continuous piecewise linear surjection. We say that f has a zigzag if there exist critical points $a<b<d<e \in I$ of f such that $\left.f\right|_{[b, d]}$ is one-to-one and either
(1) $f(b)>f(d), f\left(a^{\prime}\right)<f(e)$ for all $a^{\prime} \in[a, b]$, and $f\left(e^{\prime}\right)>f(a)$ for all $e^{\prime} \in[d, e]$, or
(2) $f(b)<f(d), f\left(a^{\prime}\right)>f(e)$ for all $a^{\prime} \in[a, b]$, and $f\left(e^{\prime}\right)<f(a)$ for all $e^{\prime} \in[d, e]$.
We say that $x \in[b, d]$ is contained in a zigzag of f.

Zigzags

The idea is that a point x is not in a zigzag of f if and only if there exists an arc $\alpha: I \rightarrow\{(x, y): x<0\}$ such that $\pi_{y}(\alpha(x))=f(x)$ for all $x \in I$ and $\alpha(x)$ can be accessed by $[\alpha(x),(0, f(x))]$.

Theorem (A., Bruin, Činč 2018)

Let $X=\underset{亡}{\lim }\left\{I, f_{i}\right\}$ where $f_{i}: I \rightarrow I$ are continuous surjections. If $x=\left(x_{0}, x_{1}, x_{2}, \ldots\right) \in X$ is such that x_{i} is not in a zigzag of f_{i} for all $i \in \mathbb{N}$, then there exists an embedding of X in the plane such that x is accessible.

Corollaries

Corollary

Let $X=\lim _{\swarrow}\left\{I, f_{i}\right\}$ where $f_{i}: I \rightarrow I$ are continuous surjections which do not have zigzags for all $i \in \mathbb{N}$. Then for every $x \in X$ there exists an embedding of X in the plane such that x is accessible.

Corollary (A, Bruin, Činč 2016)

For every unimodal inverse limit space X and every $x \in X$ there exists an embedding of X in the plane such that x is accessible.

Two definitions of an endpoint

Let X be a one-dimensional continuum.

Definition 1

We say that $x \in X$ is an endpoint of X if $x \in A \cap B$ implies $A \subset B$ or $B \subset A$ for every subcontinua $A, B \subset X$.

Two definitions of an endpoint

Let X be a one-dimensional continuum.

Definition 1

We say that $x \in X$ is an endpoint of X if $x \in A \cap B$ implies $A \subset B$ or $B \subset A$ for every subcontinua $A, B \subset X$.

Definition 2 (Lelek 60s)

We say that $x \in X$ is an L-endpoint of X if it is an endpoint of every arc $A \subset X$ which contains it.

Two definitions of an endpoint

Let X be a one-dimensional continuum.

Definition 1

We say that $x \in X$ is an endpoint of X if $x \in A \cap B$ implies $A \subset B$ or $B \subset A$ for every subcontinua $A, B \subset X$.

Definition 2 (Lelek 60s)

We say that $x \in X$ is an L-endpoint of X if it is an endpoint of every arc $A \subset X$ which contains it.

Definition 1 implies Definition 2.

Two definitions of an endpoint

Let X be a one-dimensional continuum.

Definition 1

We say that $x \in X$ is an endpoint of X if $x \in A \cap B$ implies $A \subset B$ or $B \subset A$ for every subcontinua $A, B \subset X$.

Definition 2 (Lelek 60s)

We say that $x \in X$ is an L-endpoint of X if it is an endpoint of every arc $A \subset X$ which contains it.

Definition 1 implies Definition 2.

Question

For which one-dimensional X are the two definitions equivalent? For which chainable continua X ?

Two definitions of an endpoint

Definition 1

We say that $x \in X$ is an endpoint of X if $x \in A \cap B$ implies $A \subset B$ or $B \subset A$ for every subcontinua $A, B \subset X$.

Definition 2

We say that $x \in X$ is an L-endpoint of X if it is an endpoint of every arc $A \subset X$ which contains it.

Endpoints in unimodal inverse limits

Let $X=\lim \left\{I, f_{i}\right\}$ and $x=\left(x_{0}, x_{1}, \ldots\right) \in X$. For $i \in \mathbb{N}_{0}$ we define i-basic arc $A_{i}(x)$ as maximal arc in X such that $x \in A_{i}(x)$ and $\left.\pi_{i}\right|_{A_{i}(x)}$ is one-to-one (can be degenerate).

Endpoints in unimodal inverse limits

Let $X=\lim _{\leftarrow}\left\{I, f_{i}\right\}$ and $x=\left(x_{0}, x_{1}, \ldots\right) \in X$. For $i \in \mathbb{N}_{0}$ we define i-basic arc $A_{i}(x)$ as maximal arc in X such that $x \in A_{i}(x)$ and $\left.\pi_{i}\right|_{A_{i}(x)}$ is one-to-one (can be degenerate).

Theorem (Bruin 1999)

Let $X=\underset{\rightleftarrows}{\lim }\left\{I, T_{s}\right\}$ and $x \in X$. Then x is an endpoint of X if and only if x is an endpoint of $A_{i}(x)$ for every $i \in \mathbb{N}_{0}$.

Endpoints in unimodal inverse limits

Let $X=\lim _{m}\left\{I, f_{i}\right\}$ and $x=\left(x_{0}, x_{1}, \ldots\right) \in X$. For $i \in \mathbb{N}_{0}$ we define i-basic arc $A_{i}(x)$ as maximal arc in X such that $x \in A_{i}(x)$ and $\left.\pi_{i}\right|_{A_{i}(x)}$ is one-to-one (can be degenerate).

Theorem (Bruin 1999)

Let $X=\underset{\rightleftarrows}{\lim }\left\{I, T_{s}\right\}$ and $x \in X$. Then x is an endpoint of X if and only if x is an endpoint of $A_{i}(x)$ for every $i \in \mathbb{N}_{0}$.

Endpoints in unimodal inverse limits

Let $X=\lim _{\leftrightarrows}\left\{I, f_{i}\right\}$ and $x=\left(x_{0}, x_{1}, \ldots\right) \in X$. For $i \in \mathbb{N}_{0}$ we define i-basic arc $A_{i}(x)$ as maximal arc in X such that $x \in A_{i}(x)$ and $\left.\pi_{i}\right|_{A_{i}(x)}$ is one-to-one (can be degenerate).

Theorem (Bruin 1999)

Let $X=\lim _{\leftrightarrows}\left\{I, T_{s}\right\}$ and $x \in X$. Then x is an endpoint of X if and only if x is an endpoint of $A_{i}(x)$ for every $i \in \mathbb{N}_{0}$.

For unimodal inverse limits, the two definitions of endpoints are equivalent.

The third definition of an endpoint

Definition 3

We say that $x \in X=\lim _{\leftrightarrows}\left\{I, f_{i}\right\}$ is a B-endpoint if it is an endpoint of $A_{i}(x)$ for every $i \in \mathbb{N}_{0}$.

Definition 3

We say that $x \in X=\lim _{\leftrightarrows}\left\{I, f_{i}\right\}$ is a B-endpoint if it is an endpoint of $A_{i}(x)$ for every $i \in \mathbb{N}_{0}$.

Note: The definition depends on the choice of bonding maps.

Definition 3

We say that $x \in X=\lim _{\leftrightarrows}\left\{I, f_{i}\right\}$ is a B-endpoint if it is an endpoint of $A_{i}(x)$ for every $i \in \mathbb{N}_{0}$.

Note: The definition depends on the choice of bonding maps.

Definition 2 implies Definition 3.

B-endpoints which are not endpoints

Endpoints in zigzag-free interval inverse limits

Theorem

Let $X=\lim \left\{I, f_{i}\right\}$ and assume that every f_{i} is zigzag-free. Then $x \in X$ is an endpoint if and only if it is a B-endpoint. Specially, all three definitions of endpoints are equivalent.

Endpoints in zigzag-free interval inverse limits

Theorem

Let $X=\lim \left\{I, f_{i}\right\}$ and assume that every f_{i} is zigzag-free. Then $x \in X$ is an endpoint if and only if it is a B-endpoint. Specially, all three definitions of endpoints are equivalent.

Sketch of proof:
Assume $x=\left(x_{0}, x_{1}, \ldots\right)$ is not an endpoint, so there are subcontinua $A, B \subset X$ such that $x \in A \cap B$ and $A \backslash B, B \backslash A \neq \emptyset$. Let $A_{i}=\pi_{i}(A), B_{i}=\pi_{i}(B), i \in \mathbb{N}_{0}$ be coordinate projections. They are all intervals, $x_{i} \in A_{i} \cap B_{i}$ for every i, and there exists $N \in \mathbb{N}$ such that $A_{i} \backslash B_{i}, B_{i} \backslash A_{i} \neq \emptyset$, for all $i>N$.

Endpoints in zigzag-free interval inverse limits

Assume x is not an endpoint, so there are subcontinua $A, B \subset X$ such that $x \in A \cap B$ and $A \backslash B, B \backslash A \neq \emptyset$.
Let $A_{i}=\pi_{i}(A), B_{i}=\pi_{i}(B), i \in \mathbb{N}_{0}$ be coordinate projections. They are all intervals, $x_{i} \in A_{i} \cap B_{i}$ for every i, and there exists $N \in \mathbb{N}$ such that $A_{i} \backslash B_{i}, B_{i} \backslash A_{i} \neq \emptyset$, for all $i>N$.

Endpoints in zigzag-free interval inverse limits

Since f_{i+1} does not contain a zigzag, there exists an interval $\left(l_{i+1}, r_{i+1}\right) \ni x_{i+1}$ such that $\left.f_{i+1}\right|_{\left[l_{i+1}, r_{i+1}\right]}:\left[I_{i+1}, r_{i+1}\right] \rightarrow A_{i} \cup B_{i}$ is one-to-one and surjective.

Endpoints in zigzag-free interval inverse limits

Since f_{i+1} does not contain a zigzag, there exists an interval $\left(l_{i+1}, r_{i+1}\right) \ni x_{i+1}$ such that $\left.f_{i+1}\right|_{\left[l_{i+1}, r_{i+1}\right]}:\left[I_{i+1}, r_{i+1}\right] \rightarrow A_{i} \cup B_{i}$ is one-to-one and surjective.

So we can find an $\operatorname{arc} A:=\left[a_{N}, b_{N}\right] \stackrel{f_{N+1}}{\leftrightarrows}\left[a_{N+1}, b_{N+1}\right] \stackrel{f_{N+2}}{\rightleftarrows}$ $\left[a_{N+2}, b_{N+2}\right] \stackrel{f_{N+3}}{\leftarrow}\left[a_{N+4}, b_{N+4}\right] \stackrel{f_{N+4}}{\longleftarrow} \ldots$
such that $x \in \operatorname{Int}(A) \subset \operatorname{Int}\left(A_{N}(x)\right)$, so x is not a B-endpoint.

Barge-Martin characterization of endpoints

Theorem (Barge and Martin 1994)

Let $f: I \rightarrow I$ be continuous. Then $\left(x_{0}, x_{1}, \ldots\right) \in X=\lim _{\rightleftharpoons}\{I, f\}$ is an endpoint of X if and only if for every $i \in \mathbb{N}$, every interval $J_{i}=\left[a_{i}, b_{i}\right] \ni x_{i}$ and every $\varepsilon>0$ there is $N \in \mathbb{N}$ such that if $J_{i+N}=\left[a_{i+N}, b_{i+N}\right]$ is an interval with $x_{i+N} \in J_{i+N}$ and $f^{N}\left(J_{i+N}\right)=J_{i}$, then x_{i+N} does not separate $f^{-N}\left(\left[a_{i}, a_{i}+\varepsilon\right]\right)$ from $f^{-N}\left(\left[b_{i}-\varepsilon, b_{i}\right]\right)$.

Converse?

Not having a zigzag is not a sufficient condition for the two definitions to be equivalent.

Converse?

Not having a zigzag is not a sufficient condition for the two definitions to be equivalent.

Converse?

Not having a zigzag is not a sufficient condition for the two definitions to be equivalent.

Example by Piotr Minc (2001) sugge-
 sted as a candidate for a counterexample to the Nadler-Quinn problem. Map is long-branched and leo, so all basic arcs are sufficiently long, and every proper subcontinuum is an arc.
So point is an endpoint if and only if it is a B-endpoint. Here, only $(0,0, \ldots)$ and $(1,1, \ldots)$ are endpoints.

Questions

Questions

For which $X=\lim \left\{I, f_{i}\right\}$ is it true that every B-endpoint is an endpoint? For which one-dimensional X is every L-endpoint an endpoint? What is we restrict to chainable continua X ?

Thank you!

Happy birthday Michał!

