Zigzags in interval inverse limits

Ana Anušić University of São Paulo, Brazil

Conference on Dynamical Systems Celebrating Michał Misiurewicz's 70th Birthday Kraków, Poland, June 10–14, 2019

Heliconia rostrata (false bird of paradise or lobster claw)

Ana Anušić University of São Paulo, Brazil Zigzags and endpoints

Let I = [0, 1] be the unit interval.

For $i \in \mathbb{N}$ let $f_i \colon I \to I$ be continuous (surjection).

$$I \xleftarrow{f_1} I \xleftarrow{f_2} I \xleftarrow{f_3} I \xleftarrow{f_4} I \xleftarrow{f_5} I \dots$$

The inverse limit space of the inverse system $\{I, f_i\}_{i \in \mathbb{N}}$ is:

$$X = \varprojlim \{I, f_i\} = \{(x_0, x_1, x_2, x_3, \ldots) : f_i(x_i) = x_{i-1}\} \subset I^{\infty},$$

with the product topology.

Coordinate projections $\pi_i \colon X \to I$, $\pi_i((x_0, x_1, x_2, \ldots)) = x_i$.

X is a **continuum** (compact, connected, metric), and **chainable** (admits arbitrary small covers whose nerves are arcs).

Unimodal inverse limits $X_s = \lim \{I, T_s\}$

AP ► < E ►

Theorem (Bing 1951)

Every chainable continuum can be embedded in the plane.

Theorem (Bing 1951)

Every chainable continuum can be embedded in the plane.

Planar embeddings with specific properties?

Theorem (Bing 1951)

Every chainable continuum can be embedded in the plane.

Planar embeddings with specific properties?

A point $x \in X \subset \mathbb{R}^2$ is called **accessible** if there is an arc $A \subset \mathbb{R}^2$ such that $A \cap X = \{x\}$.

A point $x \in X \subset \mathbb{R}^2$ is called **accessible** if there is an arc $A \subset \mathbb{R}^2$ such that $A \cap X = \{x\}$.

Open question(Nadler and Quinn 1972)

Given a chainable continuum X and $p \in X$, is it possible to embed X in the plane such that p is accessible?

A point $x \in X \subset \mathbb{R}^2$ is called **accessible** if there is an arc $A \subset \mathbb{R}^2$ such that $A \cap X = \{x\}$.

Open question(Nadler and Quinn 1972)

Given a chainable continuum X and $p \in X$, is it possible to embed X in the plane such that p is accessible?

Yes if bonding maps are zigzag-free (A, Bruin, Činč 2018).

A point $x \in X \subset \mathbb{R}^2$ is called **accessible** if there is an arc $A \subset \mathbb{R}^2$ such that $A \cap X = \{x\}$.

Open question(Nadler and Quinn 1972)

Given a chainable continuum X and $p \in X$, is it possible to embed X in the plane such that p is accessible?

Yes if bonding maps are zigzag-free (A, Bruin, Činč 2018).

Specially, yes for unimodal inverse limits (A, Bruin, Činč 2016).

Zigzags

Let $f: I \to I$ be a continuous piecewise linear surjection. We say that f has a **zigzag** if there exist critical points $a < b < d < e \in I$ of f such that $f|_{[b,d]}$ is one-to-one and either

- f(b) > f(d), f(a') < f(e) for all $a' \in [a, b]$, and f(e') > f(a) for all $e' \in [d, e]$, or
- **2** f(b) < f(d), f(a') > f(e) for all a' ∈ [a, b], and f(e') < f(a) for all e' ∈ [d, e].

We say that $x \in [b, d]$ is contained in a zigzag of f.

Zigzags

The idea is that a point x is **not** in a zigzag of f if and only if there exists an arc $\alpha: I \to \{(x, y) : x < 0\}$ such that $\pi_y(\alpha(x)) = f(x)$ for all $x \in I$ and $\alpha(x)$ can be accessed by $[\alpha(x), (0, f(x))]$.

Theorem (A., Bruin, Činč 2018)

Let $X = \lim_{i \to i} \{I, f_i\}$ where $f_i \colon I \to I$ are continuous surjections. If $x = (x_0, x_1, x_2, ...) \in X$ is such that x_i is not in a zigzag of f_i for all $i \in \mathbb{N}$, then there exists an embedding of X in the plane such that x is accessible.

- 4 同 6 4 日 6 4 日 6

э

Corollary

Let $X = \lim_{i \to I} \{I, f_i\}$ where $f_i : I \to I$ are continuous surjections which do not have zigzags for all $i \in \mathbb{N}$. Then for every $x \in X$ there exists an embedding of X in the plane such that x is accessible.

Corollary (A, Bruin, Činč 2016)

For every unimodal inverse limit space X and every $x \in X$ there exists an embedding of X in the plane such that x is accessible.

Definition 1

We say that $x \in X$ is an endpoint of X if $x \in A \cap B$ implies $A \subset B$ or $B \subset A$ for every subcontinua $A, B \subset X$.

Definition 1

We say that $x \in X$ is an endpoint of X if $x \in A \cap B$ implies $A \subset B$ or $B \subset A$ for every subcontinua $A, B \subset X$.

Definition 2 (Lelek 60s)

We say that $x \in X$ is an *L*-endpoint of X if it is an endpoint of every arc $A \subset X$ which contains it.

Definition 1

We say that $x \in X$ is an endpoint of X if $x \in A \cap B$ implies $A \subset B$ or $B \subset A$ for every subcontinua $A, B \subset X$.

Definition 2 (Lelek 60s)

We say that $x \in X$ is an *L*-endpoint of X if it is an endpoint of every arc $A \subset X$ which contains it.

Definition 1 implies Definition 2.

Definition 1

We say that $x \in X$ is an endpoint of X if $x \in A \cap B$ implies $A \subset B$ or $B \subset A$ for every subcontinua $A, B \subset X$.

Definition 2 (Lelek 60s)

We say that $x \in X$ is an *L*-endpoint of X if it is an endpoint of every arc $A \subset X$ which contains it.

Definition 1 implies Definition 2.

Question

For which one-dimensional X are the two definitions equivalent? For which chainable continua X?

Two definitions of an endpoint

Definition 1

We say that $x \in X$ is an endpoint of X if $x \in A \cap B$ implies $A \subset B$ or $B \subset A$ for every subcontinua $A, B \subset X$.

Definition 2

We say that $x \in X$ is an *L*-endpoint of X if it is an endpoint of every arc $A \subset X$ which contains it.

Let $X = \lim_{i \to \infty} \{I, f_i\}$ and $x = (x_0, x_1, \ldots) \in X$. For $i \in \mathbb{N}_0$ we define *i*-basic arc $A_i(x)$ as maximal arc in X such that $x \in A_i(x)$ and $\pi_i|_{A_i(x)}$ is one-to-one (can be degenerate).

Let $X = \varprojlim \{I, f_i\}$ and $x = (x_0, x_1, \ldots) \in X$. For $i \in \mathbb{N}_0$ we define *i*-basic arc $A_i(x)$ as maximal arc in X such that $x \in A_i(x)$ and $\pi_i|_{A_i(x)}$ is one-to-one (can be degenerate).

Theorem (Bruin 1999)

Let $X = \lim_{t \to \infty} \{I, T_s\}$ and $x \in X$. Then x is an endpoint of X if and only if x is an endpoint of $A_i(x)$ for every $i \in \mathbb{N}_0$.

Let $X = \varprojlim \{I, f_i\}$ and $x = (x_0, x_1, \ldots) \in X$. For $i \in \mathbb{N}_0$ we define *i*-basic arc $A_i(x)$ as maximal arc in X such that $x \in A_i(x)$ and $\pi_i|_{A_i(x)}$ is one-to-one (can be degenerate).

Theorem (Bruin 1999)

Let $X = \lim_{t \to \infty} \{I, T_s\}$ and $x \in X$. Then x is an endpoint of X if and only if x is an endpoint of $A_i(x)$ for every $i \in \mathbb{N}_0$.

Let $X = \varprojlim \{I, f_i\}$ and $x = (x_0, x_1, \ldots) \in X$. For $i \in \mathbb{N}_0$ we define *i*-basic arc $A_i(x)$ as maximal arc in X such that $x \in A_i(x)$ and $\pi_i|_{A_i(x)}$ is one-to-one (can be degenerate).

Theorem (Bruin 1999)

Let $X = \lim_{t \to \infty} \{I, T_s\}$ and $x \in X$. Then x is an endpoint of X if and only if x is an endpoint of $A_i(x)$ for every $i \in \mathbb{N}_0$.

For unimodal inverse limits, the two definitions of endpoints are equivalent.

Definition 3

We say that $x \in X = \varprojlim \{I, f_i\}$ is a *B*-endpoint if it is an endpoint of $A_i(x)$ for every $i \in \mathbb{N}_0$.

Definition 3

We say that $x \in X = \varprojlim \{I, f_i\}$ is a *B*-endpoint if it is an endpoint of $A_i(x)$ for every $i \in \mathbb{N}_0$.

Note: The definition depends on the choice of bonding maps.

Definition 3

We say that $x \in X = \varprojlim \{I, f_i\}$ is a *B*-endpoint if it is an endpoint of $A_i(x)$ for every $i \in \mathbb{N}_0$.

Note: The definition depends on the choice of bonding maps.

Definition 2 implies Definition 3.

B-endpoints which are not endpoints

Ana Anušić University of São Paulo, Brazil Zigzags and endpoints

Theorem

Let $X = \lim_{i \to \infty} \{I, f_i\}$ and assume that every f_i is zigzag-free. Then $x \in X$ is an endpoint if and only if it is a B-endpoint. Specially, all three definitions of endpoints are equivalent.

Theorem

Let $X = \lim_{i \to \infty} \{I, f_i\}$ and assume that every f_i is zigzag-free. Then $x \in X$ is an endpoint if and only if it is a B-endpoint. Specially, all three definitions of endpoints are equivalent.

Sketch of proof:

Assume $x = (x_0, x_1, ...)$ is not an endpoint, so there are subcontinua $A, B \subset X$ such that $x \in A \cap B$ and $A \setminus B, B \setminus A \neq \emptyset$. Let $A_i = \pi_i(A), B_i = \pi_i(B), i \in \mathbb{N}_0$ be coordinate projections. They are all intervals, $x_i \in A_i \cap B_i$ for every *i*, and there exists $N \in \mathbb{N}$ such that $A_i \setminus B_i, B_i \setminus A_i \neq \emptyset$, for all i > N.

Endpoints in zigzag-free interval inverse limits

Assume x is not an endpoint, so there are subcontinua $A, B \subset X$ such that $x \in A \cap B$ and $A \setminus B, B \setminus A \neq \emptyset$. Let $A_i = \pi_i(A), B_i = \pi_i(B), i \in \mathbb{N}_0$ be coordinate projections. They are all intervals, $x_i \in A_i \cap B_i$ for every *i*, and there exists $N \in \mathbb{N}$ such that $A_i \setminus B_i, B_i \setminus A_i \neq \emptyset$, for all i > N.

Endpoints in zigzag-free interval inverse limits

Since f_{i+1} does not contain a zigzag, there exists an interval $(I_{i+1}, r_{i+1}) \ni x_{i+1}$ such that $f_{i+1}|_{[I_{i+1}, r_{i+1}]} \colon [I_{i+1}, r_{i+1}] \to A_i \cup B_i$ is one-to-one and surjective.

Endpoints in zigzag-free interval inverse limits

Since f_{i+1} does not contain a zigzag, there exists an interval $(I_{i+1}, r_{i+1}) \ni x_{i+1}$ such that $f_{i+1}|_{[I_{i+1}, r_{i+1}]} \colon [I_{i+1}, r_{i+1}] \to A_i \cup B_i$ is one-to-one and surjective.

Barge-Martin characterization of endpoints

Theorem (Barge and Martin 1994)

Let $f: I \to I$ be continuous. Then $(x_0, x_1, ...) \in X = \lim_{i \to I} \{I, f\}$ is an endpoint of X if and only if for every $i \in \mathbb{N}$, every interval $J_i = [a_i, b_i] \ni x_i$ and every $\varepsilon > 0$ there is $N \in \mathbb{N}$ such that if $J_{i+N} = [a_{i+N}, b_{i+N}]$ is an interval with $x_{i+N} \in J_{i+N}$ and $f^N(J_{i+N}) = J_i$, then x_{i+N} does not separate $f^{-N}([a_i, a_i + \varepsilon])$ from $f^{-N}([b_i - \varepsilon, b_i])$.

Ana Anušić University of São Paulo, Brazil

Zigzags and endpoints

Converse?

Not having a zigzag is not a sufficient condition for the two definitions to be equivalent.

Converse?

Not having a zigzag is not a sufficient condition for the two definitions to be equivalent.

Converse?

Not having a zigzag is not a sufficient condition for the two definitions to be equivalent.

Example by Piotr Minc (2001) suggested as a candidate for a counterexample to the Nadler-Quinn problem. Map is long-branched and leo, so all basic arcs are sufficiently long, and every proper subcontinuum is an arc. So point is an endpoint if and only if it is a *B*-endpoint. Here, only (0, 0, ...)and (1, 1, ...) are endpoints.

Questions

For which $X = \lim_{i \to \infty} \{I, f_i\}$ is it true that every *B*-endpoint is an endpoint? For which one-dimensional X is every *L*-endpoint an endpoint? What is we restrict to chainable continua X?

Thank you!

Happy birthday Michał!

Ana Anušić University of São Paulo, Brazil Zigzags and endpoints